Skip to main content

The Effects of Impurities on the Phase Composition and the Properties of the Al–Cu–Gd Alloy

Abstract

The effect of impurities on the phase composition and the properties of a new quasibinary Al–Cu–Gd alloy have been investigated. The microstructure in the cast alloy consists of an aluminum solid solution, a dispersed eutectic with the Al8Cu4Gd phase with approximately 1% iron impurity dissolved, and an (AlGdCuSi) phase with an approximate composition of Al80Gd5Cu8Si5. High-temperature homogenization at 600°С results in the fragmentation and spheroidization of the solidification-induced phases, including the silicon-containing phase. The annealing of cold-worked sheets at temperatures up to 250°C results in roughly the same softening associated with the recovery and polygonization processes in alloys with and without impurities. The structure is completely recrystallized after 1-hour annealing at 300°C and has an average grain size of 7.5 μm, which slightly increases to 11 μm after annealing at 550°C. The yield strength of the alloys rolled and annealed at 100–150°С is 227–276 MPa with elongation of 5%. Iron and silicon impurities have no negative effects on the microstructure and mechanical properties of this new alloy.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, Casting Aluminum Alloys (Alcoa Technical Center, 2007).

    Book  Google Scholar 

  2. ASM HANDBOOK. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (The Materials Information Company, 2010), Vol. 2.

  3. N. A. Belov, A. V. Khvan, and A. N. Alabin, “Microstructure and phase composition of Al–Ce–Cu alloys in the Al-rich corner,” Mater. Sci. Forum 519521, 395–400 (2006).

    Article  Google Scholar 

  4. N. A. Belov and A. V. Khvan, “The ternary Al–Ce–Cu phase diagram in the aluminum-rich corner,” Acta Mater. 55, 5473–5482 (2007).

    Article  CAS  Google Scholar 

  5. A. V. Pozdniakov and R. Y. Barkov, “Microstructure and materials characterisation of the novel Al–Cu–Y alloy,” Mater. Sci. Technol. 34, 1489–1496 (2018).

    Article  CAS  Google Scholar 

  6. S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasi-binary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr. 121, 528–534 (2020).

    Google Scholar 

  7. A. V. Pozdniakov, R. Yu. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng., A 758, 28–35 (2019).

    Article  CAS  Google Scholar 

  8. S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of Mn on the phase composition and properties of Al–Cu–Y–Zr alloy,” Phys. Met. Metallogr. 121, 1227–1232 (2020).

    Article  CAS  Google Scholar 

  9. S. M. Amer, R. Y. Barkov, A. S. Prosviryakov, and A. V. Pozdniakov, “Structure and properties of new heat-resistant cast alloys based on the Al–Cu–Y and Al–Cu–Er systems,” Phys. Met. Metallogr. 122, 908–914 (2021).

    Article  CAS  Google Scholar 

  10. S. M. Amer, R. Y. Barkov, A. S. Prosviryakov, and A. V. Pozdniakov, “Structure and properties of new wrought Al–Cu–Y and Al–Cu–Er based alloys,” Phys. Met. Metallogr. 122, 915–922 (2021).

    Article  CAS  Google Scholar 

  11. A. V. Pozdnyakov, R. Yu. Barkov, Zh. Sarsenbaev, S. M. Amer, A. S. Prosviryakov, “Evolution of microstructure and mechanical properties of a new Al–Cu–Er wrought alloy,” Phys. Met. Metallogr. 120, 614–619 (2019).

    Article  CAS  Google Scholar 

  12. S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, I. S. Loginova, and A. V. Pozdniakov, “Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy,” Mater. Sci. Technol. 36, 453–459 (2020).

    Article  CAS  Google Scholar 

  13. S. M. Amer, A. V. Mikhaylovskaya, R. Yu. Barkov, A. D. Kotov, A. G. Mochugovskiy, O. A. Yakovtseva, M. V. Glavatskikh, I. S. Loginova, S. V. Medvedeva, and A. V. Pozdniakov, “Effect of homogenization treatment regime on microstructure, recrystallization behavior, mechanical properties, and superplasticity of Al–Cu–Er–Zr alloy,” JOM 73, 3092–3101 (2021).

    Article  CAS  Google Scholar 

  14. S. Amer, O. Yakovtseva, I. Loginova, S. Medvedeva, Al. Prosviryakov, A. Bazlov, R. Barkov, and A. Pozdniakov, “The phase composition and mechanical properties of the novel precipitation-strengthening Al–Cu–Er–Mn–Zr alloy,” Appl. Sci. 10, 5345 (2020).

    Article  CAS  Google Scholar 

  15. S. Amer, R. Barkov, and A. Pozdniakov, “Microstructure and mechanical properties of novel quasibinary Al–Cu–Yb and Al–Cu–Gd alloys,” Metals 11, 476 (2021).

    Article  CAS  Google Scholar 

  16. S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of iron and silicon impurities on phase composition and mechanical properties of Al–6.3Cu–3.2Y alloy,” Phys. Met. Metallogr. 121, 1002–1007 (2020).

    Article  CAS  Google Scholar 

  17. S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of impurities on the phase composition and properties of a wrought Al–6% Cu–4.05% Er alloy,” Phys. Met. Metallogr. 121, 495–499 (2020).

    Article  CAS  Google Scholar 

  18. N. Q. Vo, D. C. Dunand, and D. N. Seidman, “Improving aging and creep resistance in a dilute Al–Sc alloy by microalloying with Si, Zr and Er,” Acta Mater. 63, 73–85 (2014).

    Article  CAS  Google Scholar 

  19. A. De Luca, D. C. Dunand, and D. N. Seidman, “Mechanical properties and optimization of the aging of a dilute Al–Sc–Er–Zr–Si alloy with a high Zr/Sc ratio,” Acta Mater. 119, 35–42 (2016).

    Article  CAS  Google Scholar 

  20. C. Booth-Morrison, D. N. Seidman, and D. C. Dunand, “Effect of Er additions on ambient and high-temperature strength of precipitation-strengthened Al–Zr–Sc–Si alloys,” Acta Mater. 60, 3643–3654 (2012).

    Article  CAS  Google Scholar 

  21. A. V. Pozdniakov, A. A. Aytmagambetov, S. V. Makhov, and V. I. Napalkov, “Effect of impurities of Fe and Si on the structure and strengthening upon annealing of the Al–0.2% Zr–0.1% Sc alloys with and without Y additive,” Phys. Met. Metallogr. 118, 479–484 (2017).

    Article  CAS  Google Scholar 

  22. A. V. Pozdnyakov and R. Yu. Barkov, “Effect of impurities on the phase composition and properties of a new alloy of the Al–Y–Er–Zr–Sc system,” Metallurgist 63, 79–86 (2019).

    Article  CAS  Google Scholar 

  23. R. A. Karnesky, M. E. van Dalen, D. C. Dunand, and D. N. Seidman, “Effects of substituting rare-earth elements for scandium in a precipitation-strengthened Al–0.08 at % Sc alloy,” Scr. Mater. 55, 437–440 (2006).

    Article  CAS  Google Scholar 

  24. M. E. Van Dalen, D. C. Dunand, and D. N. Seidman, “Nanoscale precipitation and mechanical properties of Al–0.06 at % Sc alloys microalloyed with Yb or Gd,” J. Mater. Sci. 41, 7814–7823 (2006).

    Article  Google Scholar 

  25. M. E. Van Dalen, D. C. Dunand, and D. N. Seidman, “Microstructural evolution and creep properties of precipitation-strengthened Al–0.06Sc–0.02Gd and Al–0.06Sc–0.02Yb (at %) alloys,” Acta Mater. 59, 5224–5237 (2011).

    Article  CAS  Google Scholar 

  26. G. Cacciamani, S. De Negri, A. Saccone, and R. Ferro, “The Al–R–Mg (R = Gd, Dy, Ho) systems. Part I: experimental investigation,” Intermetallics 11, 1125–113 (2003).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the members of the scientific school NSh-1752.2022.4 for discussing the results.

Funding

This work was supported by the Russian Scientific Foundation (project no. 21-79-00193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Yu. Barkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Gapontseva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barkov, M.V., Mamzurina, O.I., Glavatskikh, M.V. et al. The Effects of Impurities on the Phase Composition and the Properties of the Al–Cu–Gd Alloy. Phys. Metals Metallogr. 123, 604–608 (2022). https://doi.org/10.1134/S0031918X22060035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22060035

Keywords:

  • aluminum alloys
  • gadolinium
  • impurities
  • microstructure
  • phase composition
  • hardness