Skip to main content
Log in

Effect of the Temperature of Mechanical Tests on the Properties of the Nanocrystalline Cu–14Al–3Ni Alloy Subjected to High Pressure Torsion

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The tensile tests in combination with the electron microscopy and X-ray technique have provided data on the mechanical properties of the ultrafine-grained (UFG) shape-memory Cu–14 wt % Al–3 wt % Ni alloy at different temperatures and its fracture character. The UFG structure in the alloy has formed during severe plastic deformation performed by high pressure torsion. The study has shown two variants of the mechanical behavior of the UFG alloy depending on the temperature and strain rate during mechanical testing. The first case is the deformation of the alloy in the martensitic state at moderate test temperatures (300, 423, 473 K). This stage is characterized by a high hardening coefficient and moderate uniform relative elongation and reduction. The second case is deformation at higher test temperatures (573, 673 K). It is characterized mainly by large uniform localized plastic deformation and moderate hardening due to dynamic recrystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. Perkins, Shape Memory Effects in Alloys (Plenum, London, 1975).

    Book  Google Scholar 

  2. Kh. Varlimont and L. Dilei, Martensite Transformations in Alloys Based on Copper, Silver, and Gold (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  3. K. Ootsuka, K. Simidzu, Yu. Sudzuki, Yu. Sekiguti, Ts. Tadaki, T. Khomma, and S. Miyadzaki, Shape Memory Alloys (Metallurgiya, Moscow, 1990) [in Russian].

    Google Scholar 

  4. Engineering Aspects of Shape Memory Alloy, Ed. by T. W. Duering, K. L. Melton, D. Stockel, and C. M. Wayman, (Butterworth-Heineman, London, 1990).

    Google Scholar 

  5. V. N. Khachin, V. G. Pushin, and V. V. Kondrat’ev, Titanium Nickelide: Structure and Properties (Nauka, Moscow, 1992).

    Google Scholar 

  6. V. G. Pushin, V. V. Kondrat’ev, and V. N. Khachin, Pre-transitional Phenomena and Martensitic Transformations (UrO RAN, Yekaterinburg, 1998) [in Russian].

    Google Scholar 

  7. E. Bonnot, R. Romero, L. Mañosa, E. Vives, and A. Planes, “Elastocaloric effect associated with the martensitic transition in shape-memory alloys,” Phys. Rev. Lett. 100, 125901 (2008).

    Article  Google Scholar 

  8. J. Cui, Y. Wu, J. Muehlbauer, Y. Hwang, R. Radermacher, S. Fackler, M. Wuttig, and I. Takeuchi, “Demonstration of high efficiency elastocaloric cooling with large δT using NiTi wires,” Appl. Phys. Lett. 101, 073904 (2012).

    Article  Google Scholar 

  9. L. Mañosa, S. Jarque-Farnos, E. Vives, and A. Planes, “Large temperature span and giant refrigerant capacity in elastocaloric Cu–Zn–Al shape memory alloys,” Appl. Phys. Lett. 103, 211904 (2013).

    Article  Google Scholar 

  10. P. Sedlak, H. Seiner, M. Landa, V. Novák, P. Šittner, and L. I. Manosa, “Elastic Constants of bcc Austenite and 2H orthorhombic martensite in CuAlNi shape memory alloy,” Acta Mater. 53, 3643–3661 (2005).

    Article  CAS  Google Scholar 

  11. R. Dasgupta, “A look into Cu–based shape memory alloys: Present Scenario and future prospects,” J. Mater. Res. 29, No. 16, 1681–1698 (2014).

    Article  CAS  Google Scholar 

  12. V. Pushin, N. Kuranova, E. Marchenkova, and A. Pushin, “Design and development of Ti–Ni, Ni–Mn–Ga and Cu–Al–Ni-based alloys with high and low temperature shape memory effects,” Materials 12, 2616–2640 (2019).

    Article  CAS  Google Scholar 

  13. A. V. Lukyanov, V. G. Pushin, N. N. Kuranova, A. E. Svirid, A. N. Uksusnikov, Yu. M. Ustyugov, and D. V. Gunderov, “Effect of the thermomechanical treatment on structural and phase transformations in Cu–14Al–3Ni shape memory alloy subjected to high-pressure torsion,” Phys. Met. Metallogr. 119, 374–382 (2018).

    Article  CAS  Google Scholar 

  14. A. E. Svirid, A. V. Luk’yanov, V. G. Pushin, E. S. Belo-sludtseva, N. N. Kuranova, and A. V. Pushin, “Effect of the temperature of isothermal upsetting on the structure and the properties of the shape memory Cu–14 wt % Al–4 wt % Ni alloy,” Phys. Met. Metallogr. 120, 1159–1165 (2019).

    Article  CAS  Google Scholar 

  15. A. E. Svirid, V. G. Pushin, N. N. Kuranova, E. S. Belo-sludtseva, A. V. Pushin, and A. V. Lukyanov, “The effect of plastification of Cu–14Al–4Ni alloy with the shape memory effect in high-temperature isothermal precipitation,” Tech. Phys. Lett. 46, 118–121 (2020).

    Article  Google Scholar 

  16. A. E. Svirid, V. G. Pushin, N. N. Kuranova, V. V. Makarov, A. V. Pushin, A. N. Uksusnikov, and A. V. Luk’yanov, “Application of isothermal upset for megaplastic deformation of Cu–Al–Ni β alloys,” Tech. Phys. 90, 1044–1055 (2020).

    Article  Google Scholar 

  17. A. E. Svirid, V. G. Pushin, N. N. Kuranova, V. V. Makarov, and A. N. Uksusnikov, “The effect of heat treatment on the structure and mechanical properties of nanocrystalline Cu–14Al–3Ni alloy subjected to high-pressure torsion,” Phys. Met. Metallogr. 122, No. 9, 883–890 (2021).

    Article  CAS  Google Scholar 

  18. A. Pelosin and A. Riviere, “Structural and mechanical spectroscopy study of the \(\beta _{1}^{'}\) martensite decomposition in Cu–12% Al–3% Ni (wt %) alloy,” J. Alloys Compd. 268, 166–172 (1998).

    Article  CAS  Google Scholar 

  19. F. Dagdelen, T. Gokhan, A. Aydogdu, Y. Aydogdu, and O. Adiguzel, “Effect of thermal treatments on transformation behavior in shape memory Cu–Al–Ni alloys,” Mater. Lett. 57, 1079–1085 (2003).

    Article  CAS  Google Scholar 

  20. Z. Li, Z. Y. Pan, N. Tang, Y. B. Jiang, N. Liu, M. Fang, and F. Zheng, “Cu–Al–Ni–Mn shape memory alloy processed by mechanical alloying and powder metallurgy,” Mater. Sci. Eng., A 417, 225–229 (2006).

    Article  Google Scholar 

  21. N. Suresh and U. Ramamurty, “Aging response and its effect on the functional properties of Cu–Al–Ni shape memory alloys,” J. Alloys Compd. 449, 113–118 (2008).

    Article  CAS  Google Scholar 

  22. R. D. Dar, H. Yan, and Y. Chen, “Grain boundary engineering of Co–Ni–Al, Cu–Zn–Al, and Cu–Al–Ni shape memory alloys by intergranular precipitation of a ductile solid solution phase,” Scr. Mater. 115, 113–117 (2016).

    Article  CAS  Google Scholar 

  23. P. La Roca, L. Isola, Ph. Vermaut, and J. Malarria, “Relationship between grain size and thermal hysteresis of martensitic transformations in Cu-based shape memory alloys,” Scr. Mater. 135, 5–9 (2017).

    Article  CAS  Google Scholar 

  24. X. Zhang, X. Zhao, F. Wang, L. Qingsuo, and Q. Wang, “Microstructure, mechanical properties and shape memory effect of Cu–Hf–Al–Ni alloys,” Mater. Sci. Technol. 34, No. 12, 1497–1501 (2018).

    Article  CAS  Google Scholar 

  25. A. E. Svirid, V. G. Pushin, N. N. Kuranova, A. V. Luk’yanov, A. V. Pushin, A. N. Uksusnikov, and Y. M. Ustyugov, “The structure–phase transformations and mechanical properties of the shape memory effect alloys based on the system Cu–Al–Ni,” Mater. Today: Proc. 4, 4758–4762 (2017).

    Google Scholar 

  26. A. E. Svirid, N. N. Kuranova, A. V. Luk’yanov, V. V. Makarov, N. V. Nikolaeva, V. G. Pushin, and A. N. Uksusnikov, “Influence of thermomechanical treatment on structural-phase transformations and mechanical properties of the Cu–Al–Ni shape-memory alloys,” Russ. Phys. J. 61, 1681–1686 (2018).

    Article  Google Scholar 

  27. A. E. Svirid, A. V. Luk’yanov, V. V. Makarov, V. G. Pushin, and A. N. Uksusnikov, “Influence of doping with aluminum on the structure, phase transformations and properties of Cu–Al–Ni alloys with shape memory effect,” Chelyabinskii Fiz.-Mat. Zh. 4, 108–117 (2019).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was performed at the Center of the Collaborative Access “Test Center of Nanotechnologies and Advanced Materials,” Institute of Metal Physics, Ural Branch, Russian Academy of Sciences.

Funding

This work was performed within the scope of the State Task (theme “Structure,” no. АААА-А18-118020190106-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Svirid.

Additional information

Translated by T. Gapontseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svirid, A.E., Pushin, V.G., Kuranova, N.N. et al. Effect of the Temperature of Mechanical Tests on the Properties of the Nanocrystalline Cu–14Al–3Ni Alloy Subjected to High Pressure Torsion. Phys. Metals Metallogr. 123, 50–56 (2022). https://doi.org/10.1134/S0031918X22010136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22010136

Keywords:

Navigation