Skip to main content
Log in

Mechanical Properties of Metal Matrix Composites with Graphene and Carbon Nanotubes

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The results of recent experiments and computer simulations and theoretical modeling of the mechanical properties of metal matrix composites with graphene and carbon nanotubes are reviewed. The mechanisms involved in strengthening of such composites and the results of simulation of their plastic deformation and strength properties are considered. The effects of the size of inclusions and interface characteristics on the strength and plasticity of such composites are analyzed. Various processes of plastic deformation and fracture of metal matrix composites with graphene and carbon nanotubes and the effects of these processes on the mechanical properties of composites of these kinds are discussed. The influence of the nonuniform grain size distribution of the metal matrix on the strength and plasticity of metal matrix composites with graphene and carbon nanotubes is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.

Similar content being viewed by others

REFERENCES

  1. S. I. Ahmad, H. Hamoudi, A. Abdala, Z. K. Ghouri, and K. M. Youssef, “Graphene-reinforced bulk metal matrix composites: synthesis, microstructure, and properties,” Rev. Adv. Mater. Sci. 59, 67–114 (2020).

    Article  CAS  Google Scholar 

  2. A. Nieto, A. Bisht, D. Lahiri, C. Zhang, and A. Agarwal, “Graphene reinforced metal and ceramic matrix composites: a review,” Int. Mater. Rev. 62, 241–302 (2016).

    Article  Google Scholar 

  3. Z. Hu, G. Tong, D. Lin, C. Chen, H. Guo, J. Xu, and L. Zhou, “Graphene-reinforced metal matrix nanocomposites – a review,” Mater. Sci. Technol. 32, 930–953 (2016).

    Article  CAS  Google Scholar 

  4. P. Hidalgo-Manrique, X. Lei, R. Xu, M. Zhou, I. A. Kinloch, and R. J. Young, “Copper/graphene composites: a review,” J. Mater. Sci. 54, 12236–12289 (2019).

    Article  CAS  Google Scholar 

  5. Ö. Güler and N. Bağcı, “A short review on mechanical properties of graphene reinforced metal matrix composites,” J. Mater. Res. Technol. 9, 6808–6833 (2020).

    Article  Google Scholar 

  6. N. Seyed Pourmand and H. Asgharzadeh, “Aluminum matrix composites reinforced with graphene: a review on production, microstructure, and properties,” Crit. Rev. Solid State Mater. Sci. 45, 289–337 (2019).

    Article  Google Scholar 

  7. A. Saboori, M. Dadkhah, P. Fino, and M. Pavese, “An overview of metal matrix nanocomposites reinforced with graphene nanoplatelets; mechanical, electrical and thermophysical properties,” Metals 8, 423 (2018).

    Article  Google Scholar 

  8. I. A. Ovid’ko, “Metal-graphene nanocomposites with enhanced mechanical properties: a review,” Rev. Adv. Mater. Sci. 38, 190–200 (2014).

    Google Scholar 

  9. X. Zhang, N. Zhao, and C. He, “The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design—A review,” Prog. Mater. Sci. 113, 100672 (2020).

    Article  CAS  Google Scholar 

  10. M. Yang, Y. Liu, T. Fan, and D. Zhang, “Metal-graphene interfaces in epitaxial and bulk systems: A review,” Prog. Mater. Sci. 110, 100652 (2020).

    Article  CAS  Google Scholar 

  11. S. C. Tjong, “Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets,” Mater. Sci. Eng., R 74, 281–350 (2013).

  12. M. Tabandeh-Khorshid, K. Ajay, E. Omrani, C. Kim, and P. Rohatgi, “Synthesis, characterization, and properties of graphene reinforced metal-matrix nanocomposites,” Composites, Part B 183, 107664 (2020).

    Article  CAS  Google Scholar 

  13. Z. Y. Zhao, P. K. Bai, W. B. Du, B. Liu, D. Pan, R. Das, C. T. Liu, and Z. H. Guo, “An overview of graphene and its derivatives reinforced metal matrix composites: Preparation, properties and applications,” Carbon 170, 302–326 (2020).

    Article  CAS  Google Scholar 

  14. V. Khanna, V. Kumar, and S. A. Bansal, “Mechanical properties of aluminium-graphene/carbon nanotubes (CNTs) metal matrix composites: Advancement, opportunities and perspective,” Mater. Res. Bull. 138, 111224 (2021).

    Article  CAS  Google Scholar 

  15. S. M. A. K. Mohammed and D. L. Chen, “Carbon nanotube-reinforced aluminum matrix composites,” Adv. Eng. Mater. 22, 1901176 (2019).

    Article  Google Scholar 

  16. R. Islam Rubel, M. Hasan Ali, M. Abu Jafor, and M. Mahmodul Alam, “Carbon nanotubes agglomeration in reinforced composites: A review,” AIMS Mater. Sci. 6, 756–780 (2019).

    Article  Google Scholar 

  17. M. Jagannatham, P. Chandran, S. Sankaran, P. Haridoss, N. Nayan, and S. R. Bakshi, “Tensile properties of carbon nanotubes reinforced aluminum matrix composites: A review,” Carbon 160, 14–44 (2020).

    Article  CAS  Google Scholar 

  18. K. S. Munir, P. Kingshott, and C. Wen, “Carbon nanotube reinforced titanium metal matrix composites prepared by powder metallurgy–A review,” Crit. Rev. Sol. State Mater. Sci. 40, 38–55 (2014).

    Article  Google Scholar 

  19. S. R. Bakshi, D. Lahiri, and A. Agarwal, “Carbon nanotube reinforced metal matrix composites—a review,” Int. Mater. Rev. 55, 41–64 (2013).

    Article  Google Scholar 

  20. P. J. F. Harris, “Carbon nanotube composites,” Int. Mater. Rev. 49, 31–43 (2013).

    Article  Google Scholar 

  21. S. Abazari, A. Shamsipur, H. R. Bakhsheshi-Rad, A. F. Ismail, S. Sharif, M. Razzaghi, S. Ramakrishna, and F. Berto, “Carbon nanotubes (CNTs)-reinforced magnesium-based matrix composites: a comprehensive review,” Materials 13, 4421 (2020).

    Article  CAS  Google Scholar 

  22. R. M. Sundaram, I. A. Sekiguch, M. Sekiya, T. Yamada, and K. Hata, “Copper/carbon nanotube composites: research trends and outlook,” R. Soc. Open Sci. 5, 180814 (2018).

    Article  CAS  Google Scholar 

  23. H. Hashim, M. S. Salleh, and M. Z. Omar, “Homogenous dispersion and interfacial bonding of carbon nanotube reinforced with aluminum matrix composite: A review,” Rev. Adv. Mater. Sci. 58, 295–303 (2019).

    Article  Google Scholar 

  24. I. G. Shirinkina, I. G. Brodova, D. Y. Rasposienko, R. V. Muradymov, L. A. Elshina, E. V. Shorokhov, S. V. Razorenov, and G. V. Garkushin, “The Effect of graphene additives on the structure and properties of aluminum,” Phys. Met. Metallogr. 121, 1193–1202 (2020).

    Article  CAS  Google Scholar 

  25. I. A. Kinloch, J. Suhr, J. Lou, R. J. Young, and P. M. Ajayan, “Composites with carbon nanotubes and graphene: An outlook,” Science 362, 547–553 (2018).

    Article  CAS  Google Scholar 

  26. M. Batzill, “The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects,” Surf. Sci. Rep. 67, 83–115 (2012).

    Article  CAS  Google Scholar 

  27. D. G. Papageorgiou, I. A. Kinloch, and R. J. Young, “Mechanical properties of graphene and graphene-based nanocomposites,” Prog. Mater. Sci. 90, 75–127 (2017).

    Article  CAS  Google Scholar 

  28. L. Safina, J. Baimova, K. Krylova, R. Murzaev, and R. Mulyukov, “Simulation of metal-graphene composites by molecular dynamics: a review,” Lett. Mater. 10, 351–360 (2020).

    Article  Google Scholar 

  29. K. Chu and C. Jia, “Enhanced strength in bulk graphene-copper composites,” Phys. Status Solidi A 211, 184–190 (2014).

    Article  CAS  Google Scholar 

  30. H. J. Choi, J. H. Shin, and D. H. Bae, “Grain size effect on the strengthening behavior of aluminum-based composites containing multi-walled carbon nanotubes,” Compos. Sci. Technol. 71, 1699–1705 (2011).

    Article  CAS  Google Scholar 

  31. R. R. Jiang, X. F. Zhou, and Z. P. Liu, “Electroless Ni-plated graphene for tensile strength enhancement of copper,” Mater. Sci. Eng., A 679, 323–328 (2017).

    Article  CAS  Google Scholar 

  32. H. Y. Yue, L. H. Yao, X. Gao, S. L. Zhang, E. Guo, H. Zhang, X. Y. Lin, and B. Wang, “Effect of ball-milling and graphene contents on the mechanical properties and fracture mechanisms of graphene nanosheets reinforced copper matrix composites,” J. Alloy Compd. 691, 755–762 (2017).

    Article  CAS  Google Scholar 

  33. D. D. Zhang and Z. J. Zhan, “Strengthening effect of graphene derivatives in copper matrix composites,” J. Alloy Compd. 654, 226–233 (2016).

    Article  CAS  Google Scholar 

  34. D. D. Zhang and Z. J. Zhan, “Experimental investigation of interfaces in graphene materials/copper composites from a new perspective,” RSC Adv. 6, 52219–52226 (2016).

    Article  CAS  Google Scholar 

  35. Y. K. Chen, X. Zhang, E. Z. Liu, C. N. He, C. S. Shi, J. J. Li, P. Nash, and N. Q. Zhao, “Fabrication of in-situ grown graphene reinforced Cu matrix composites,” Sci. Rep. 6, 19363 (2016).

    Article  CAS  Google Scholar 

  36. K. Duan, F. Zhu, K. Tang, L. He, Y. Chen, and S. Liu, “Effects of chirality and number of graphene layers on the mechanical properties of graphene-embedded copper nanocomposites,” Compos. Mater. Sci. 117, 294–299 (2016).

    Article  CAS  Google Scholar 

  37. S. Zhang, P. Huang, and F. Wang, “Graphene-boundary strengthening mechanism in Cu/graphene nanocomposites: A molecular dynamics simulation,” Mater. Des. 190, 108555 (2020).

    Article  CAS  Google Scholar 

  38. S. Weng, H. Ning, T. Fu, N. Hu, Y. Zhao, C. Huang, and X. Peng, “Molecular dynamics study of strengthening mechanism of nanolaminated graphene/Cu composites under compression,” Sci. Rep. 8, 3089 (2018).

    Article  Google Scholar 

  39. X. Liu, F. Wang, W. Wang, and H. Wu, “Interfacial strengthening and self-healing effect in graphene-copper nanolayered composites under shear deformation,” Carbon 107, 680–688 (2016).

    Article  CAS  Google Scholar 

  40. J. Liu, Y. Y. Zhang, H. N. Zhang, and J. Yang, “Mechanical properties of graphene-reinforced aluminium composite with modified substrate surface: a molecular dynamics study,” Nanotechnology 32, 085712 (2021).

    Article  CAS  Google Scholar 

  41. Z. Y. Liu, L. H. Wang, Y. N. Zan, W. G. Wang, B. L. Xiao, D. Wang, Q. Z. Wang, D. R. Ni, and Z. Y. Ma, “Enhancing strengthening efficiency of graphene nano-sheets in aluminum matrix composite by improving interface bonding,” Composites, Part B 199, 108268 (2020).

    Article  CAS  Google Scholar 

  42. X. Gao, H. Yue, E. Guo, H. Zhang, X. Lin, L. Yao, and B. Wang, “Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites,” Mater. Des. 94, 54–60 (2016).

    Article  CAS  Google Scholar 

  43. Z. Y. Yang, D. D. Wang, Z. X. Lu, and W. J. Hu, “Atomistic simulation on the plastic deformation and fracture of bio-inspired graphene/Ni nanocomposites,” Appl. Phys. Lett. 109, 191909 (2016).

    Article  Google Scholar 

  44. F. Shuang and K. E. Aifantis, “Dislocation-graphene interactions in Cu/graphene composites and the effect of boundary conditions: a molecular dynamics study,” Carbon 172, 50–70 (2021).

    Article  CAS  Google Scholar 

  45. X. Zhou, X. Liu, J. Shang, and Q. Yang, “Grain-size effect on plastic flow stress of nanolaminated polycrystalline aluminum/graphene composites,” Mech. Mater. 148, 103530 (2020).

    Article  Google Scholar 

  46. R. Q. Han, H. Y. Song, J. Y. Wang, and Y. L. Li, “Strengthening mechanism of Al matrix composites reinforced by nickel-coated graphene: Insights from molecular dynamics simulation,” Phys. B (Amsterdam, Neth.) 601, 412620 (2021).

  47. X. Zhou, X. Liu, J. Lei, and Q. Yang, “Atomic simulations of the formation of twist grain boundary and mechanical properties of graphene/aluminum nanolaminated composites,” Compos. Mater. Sci. 172, 109342 (2020).

    Article  CAS  Google Scholar 

  48. F. Shuang and K. E. Aifantis, “Relating the strength of graphene/metal composites to the graphene orientation and position,” Scr. Mater. 181, 70–75 (2020).

    Article  CAS  Google Scholar 

  49. C. Zhang, C. Lu, L. Q. Pei, J. Q. Li, and R. Wang, “The structural rearrangement with secondary reinforcement in graphene/nanotwinned copper nanocomposites: A molecular dynamics study,” Composites, Part B 182, 107610 (2020).

    Article  CAS  Google Scholar 

  50. R. Rezaei, C. Deng, H. Tavakoli-Anbaran, and M. Shariati, “Deformation twinning-mediated pseudoelasticity in metal-graphene nanolayered membrane,” Philos. Mag. Lett. 96, 322–329 (2016).

    Article  CAS  Google Scholar 

  51. C. Zhang, C. Lu, L. Q. Pei, J. Q. Li, and R. Wang, “Molecular dynamics simulation of the negative Poisson’s ratio in graphene/Cu nanolayered composites: Implications for scaffold design and telecommunication cables,” ACS Appl. Nano Mater. 3, 496–505 (2020).

    Article  CAS  Google Scholar 

  52. C. Zhang, C. Lu, L. Q. Pei, J. Q. Li, R. Wang, and K. Tieu, “The negative Poisson’s ratio and strengthening mechanism of nanolayered graphene/Cu composites,” Carbon 143, 125–137 (2019).

    Article  CAS  Google Scholar 

  53. X. Y. Liu, F. C. Wang, H. A. Wu, and W. Q. Wang, “Strengthening metal nanolaminates under shock compression through dual effect of strong and weak graphene interface,” Appl. Phys. Lett. 104, 231901 (2014).

    Article  Google Scholar 

  54. C. Zhang, A. Godbole, G. Michal, and C. Lu, “High shock resistance and self-healing ability of graphene/nanotwinned Cu nanolayered composites,” J. Alloy Compd. 860, 158435 (2021).

    Article  CAS  Google Scholar 

  55. X. J. Long, B. Li, L. Wang, J. Y. Huang, J. Zhu, and S. N. Luo, “Shock response of Cu/graphene nanolayered composites,” Carbon 103, 457–463 (2016).

    Article  CAS  Google Scholar 

  56. S. Bashirvand and A. Montazeri, “New aspects on the metal reinforcement by carbon nanofillers: A molecular dynamics study,” Mater. Des. 91, 306–313 (2016).

    Article  CAS  Google Scholar 

  57. R. Ishraaq, M. Rashid, and S. M. Nahid, “A novel theoretical model for predicting the optimum number of layers of multiwall carbon nanotube for reinforcing iron and molecular dynamics investigation of the failure mechanism of multi-grained matrix,” Compos. Mater. Sci. 196, Art. 110558 (2021).

  58. B. K. Choi, G. H. Yoon, and S. Lee, “Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading,” Composites, Part B 91, 119–125 (2016).

    Article  CAS  Google Scholar 

  59. S. Dong, J. Zhou, H. Liu, and D. Qi, “Computational prediction of waviness and orientation effects in carbon nanotube reinforced metal matrix composites,” Compos. Mater. Sci. 101, 8–15 (2015).

    Article  CAS  Google Scholar 

  60. R. Ishraaq, S. M. Nahid, S. Chhetri, O. Gautam, and A. M. Afsar, “A molecular dynamics investigation for predicting the optimum fiber radius and the effect of various parameters on the mechanical properties of carbon nanotube reinforced iron composite,” Compos. Mater. Sci. 174, 109486 (2020).

    Article  CAS  Google Scholar 

  61. D. M. Park, J. H. Kim, S. J. Lee, and G. H. Yoon, “Analysis of geometrical characteristics of CNT-Al composite using molecular dynamics and the modified rule of mixture (MROM),” J. Mech. Sci. Technol. 32, 5845–5853 (2018).

    Article  Google Scholar 

  62. M. E. Suk, “Enhanced tensile properties of weight-reduced nanoporous carbon nanotube-aluminum composites,” Mater. Express 9, 801–807 (2019).

    Article  CAS  Google Scholar 

  63. P. Wang, Q. Cao, H. Wang, Y. Nie, S. Liu, and Q. Peng, “Fivefold enhancement of yield and toughness of copper nanowires via coating carbon nanotubes,” Nanotechnology 31, 115703 (2020).

    Article  CAS  Google Scholar 

  64. X. Zhou, S. Song, L. Li, and R. Zhang, “Molecular dynamics simulation for mechanical properties of magnesium matrix composites reinforced with nickel-coated single-walled carbon nanotubes,” J. Compos. Mater. 50, 191–200 (2015).

    Article  Google Scholar 

  65. Y. Jiang, R. Xu, Z. Tan, G. Ji, G. Fan, Z. Li, D.‑B. Xiong, Q. Guo, Z. Li, and D. Zhang, “Interface-induced strain hardening of graphene nanosheet/aluminum composites,” Carbon 146, 17–27 (2019).

    Article  CAS  Google Scholar 

  66. X. Liu, J. Li, E. Liu, C. He, C. Shi, and N. Zhao, “Towards strength-ductility synergy with favorable strengthening effect through the formation of a quasi-continuous graphene nanosheets coated Ni structure in aluminum matrix composite,” Mater. Sci. Eng., A 748, 52–58 (2019).

    Article  CAS  Google Scholar 

  67. A. G. Sheinerman and M. Y. Gutkin, “Model of enhanced strength and ductility of metal/graphene composites with bimodal grain size distribution,” Metall. Mater. Trans. A 51, 189–199 (2020).

    Article  CAS  Google Scholar 

  68. V. C. Nardone and K. M. Prewo, “On the strength of discontinuous silicon-carbide reinforced aluminum composites,” Scr. Metall. 20, 43–48 (1986).

    Article  CAS  Google Scholar 

  69. R. J. Young, I. A. Kinloch, L. Gong, and K. S. Novoselov, “The mechanics of graphene nanocomposites: A review,” Compos. Sci. Technol. 72, 1459–1476 (2012).

    Article  CAS  Google Scholar 

  70. G. P. Tandon and G. J. Weng, “The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites,” Polym. Compos. 5, 327–333 (1984).

    Article  Google Scholar 

  71. W. Soboyejo, Mechanical Properties of Engineered Materials (CRC Press, New York, 2002).

    Book  Google Scholar 

  72. H. L. Cox, “The elasticity and strength of paper and other fibrous materials,” Brit. J. Appl. Phys. 3, 72–79 (1952).

    Article  Google Scholar 

  73. Z. L. Li, R. J. Young, I. A. Kinloch, N. R. Wilson, A. J. Marsden, and A. P. A. Raju, “Quantitative determination of the spatial orientation of graphene by polarized Raman spectroscopy,” Carbon 88, 215–224 (2015).

    Article  CAS  Google Scholar 

  74. Z. L. Li, R. J. Young, N. R. Wilson, I. A. Kinloch, C. Valles, and Z. Li, “Effect of the orientation of graphene-based nanoplatelets upon the Young’s modulus of nanocomposites,” Compos. Sci. Technol. 123, 125–133 (2016).

    Article  CAS  Google Scholar 

  75. J. C. Halpin and K. L. Kardos, “The Halpin–Tsai equations: a review,” Polym. Eng. Sci. 16, 344–352 (1976).

    Article  CAS  Google Scholar 

  76. J. A. King, D. R. Klimek, I. Miskioglu, and G. M. Odegard, “Mechanical properties of graphene nanoplatelet/epoxy composites,” J. Appl. Polymer Sci. 128, 4217–4223 (2013).

    Article  CAS  Google Scholar 

  77. A. Varykhalov and O. Rader, “Graphene grown on Co(0001) films and islands: Electronic structure and its precise magnetization dependence,” Phys. Rev. B 80, 035437 (2009).

    Article  Google Scholar 

  78. M. Gao, Y. Pan, C. D. Zhang, H. Hu, R. Yang, H. L. Lu, J. M. Cai, S. X. Du, F. Liu, and H. J. Gao, “Tunable interfacial properties of epitaxial graphene on metal substrates,” Appl. Phys. Lett. 96, 053109 (2010).

    Article  Google Scholar 

  79. L. Zhao, K. T. Rim, H. Zhou, R. He, T. F. Heinz, A. Pinczuk, G. W. Flynn, and A. N. Pasupathy, “Influence of copper crystal surface on the CVD growth of large area monolayer graphene,” Solid State Commun. 151, 509–513 (2011).

    Article  CAS  Google Scholar 

  80. L. Gao, J. R. Guest, and N. P. Guisinger, “Epitaxial Graphene on Cu(111),” Nano Lett. 10, 3512–3516 (2010).

    Article  CAS  Google Scholar 

  81. M. Cao, D.-B. Xiong, Z. Tan, G. Ji, B. Amin-Ahmadi, Q. Guo, G. Fan, C. Guo, Z. Li, and D. Zhang, “Aligning graphene in bulk copper: Nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity,” Carbon 117, 65–74 (2017).

    Article  CAS  Google Scholar 

  82. R. J. Arsenault and N. Shi, “Dislocation generation due to differences between the coefficients of thermal expansion,” Mat. Sci. Eng. 81, 175–187 (1986).

    Article  CAS  Google Scholar 

  83. Y. Estrin and H. Mecking, “A unified phenomenological description of work-hardening and creep based on one-parameter models,” Acta Metall. 32, 57–70 (1984).

    Article  Google Scholar 

  84. W. J. Poole, J. D. Embury, and D. J. Lloyd, “Work hardening in aluminum alloys,” in Fundamentals of Aluminum Metallurgy: Production, Processing and Applications, Ed. by R. Lumley (Woodhead, New Delhi, 2011), pp. 307–344.

    Google Scholar 

  85. M. E. Kassner, “Taylor hardening in five-power-law creep of metals and Class M alloys,” Acta Mater. 52, 1–9 (2004).

    Article  CAS  Google Scholar 

  86. A. Melander, “Critical resolved shear-stress of dispersion strengthened alloys,” Scand. J. Metall. 7, 109–113 (1978).

    CAS  Google Scholar 

  87. J. P. Hirth and J. Lothe, Theory of Dislocations (Wiley, New York, 1982).

    Google Scholar 

  88. G. Fribourg, Y. Brechet, A. Deschamps, and A. Simar, “Microstructure-based modelling of isotropic and kinematic strain hardening in a precipitation-hardened aluminium alloy,” Acta Mater. 59, 3621–3635 (2011).

    Article  CAS  Google Scholar 

  89. H. Proudhon, W. J. Poole, X. Wang, and Y. Brechet, “The role of internal stresses on the plastic deformation of the Al–Mg–Si–Cu alloy AA6111,” Philos. Mag. 88, 621–640 (2008).

    Article  CAS  Google Scholar 

  90. J. da Costa Teixeira, L. Bourgeois, C. W. Sinclair, and C. R. Hutchinson, “The effect of shear-resistant, plate-shaped precipitates on the work hardening of Al alloys: Towards a prediction of the strength–elongation correlation,” Acta Mater. 57, 6075–6089 (2009).

    Article  CAS  Google Scholar 

  91. T. W. Clyne and P. J. Withers, An Introduction to Metal Matrix Composites (Cambridge University, Cambridge, 1993).

    Book  Google Scholar 

  92. R. Xu, Z. Tan, G. Fan, G. Ji, Z. Li, Q. Guo, Z. Li, and D. Zhang, “Microstructure-based modeling on structure-mechanical property relationships in carbon nanotube/aluminum composites,” Int. J. Plast. 120, 278–295 (2019).

    Article  CAS  Google Scholar 

  93. L. M. Brown and D. R. Clarke, “Work hardening due to internal stresses in composite materials,” Acta Metall. 23, 821–830 (1975).

    Article  CAS  Google Scholar 

  94. Li X. A. Liu, J. T. Robinson, Z. Q. Wei, P. E. Sheehan, B. H. Houston, and E. S. Snow, “Low temperature elastic properties of chemically reduced and CVD-grown graphene thin films,” Diamond Relat. Mater. 19, 875–878 (2010).

    Article  Google Scholar 

  95. Y. T. Zhu and X. L. Wu, “Perspective on hetero-deformation induced (HDI) hardening and back stress,” Mater. Res. Lett. 7, 393–398 (2019).

    Article  Google Scholar 

  96. C. W. Sinclair, W. J. Poole, and Y. Brechet, “A model for the grain size dependent work hardening of copper,” Scr. Mater. 55, 739–742 (2006).

    Article  CAS  Google Scholar 

  97. M. Delince, Y. Brechet, J. D. Embury, M. G. D. Geers, P. J. Jacques, and T. Pardoen, “Structure-property optimization of ultrafine-grained dual-phase steels using a micro structure-based strain hardening model,” Acta Mater. 55, 2337–2350 (2007).

    Article  CAS  Google Scholar 

  98. L. Zhao, Q. Guo, Z. Li, D. -B. Xiong, S. Osovski, Y. Su, and D. Zhang, “Strengthening and deformation mechanisms in nanolaminated graphene-Al composite micro-pillars affected by graphene in-plane sizes,” Int. J. Plast. 116, 265–279 (2019).

    Article  CAS  Google Scholar 

  99. L. Zhao, Q. Guo, Y. Shi, Y. Liu, S. Osovski, Z. Li, D.‑B. Xiong, Y. Su, and D. Zhang, “Interfacial effect on the deformation mechanism of bulk nanolaminated graphene-Al composites,” Metall. Mater. Trans. A 50, 1113–1118 (2019).

    Article  CAS  Google Scholar 

  100. Z. Li, H. Wang, Q. Guo, Z. Li, D. B. Xiong, Y. Su, H. Gao, X. Li, and D. Zhang, “Regain strain-hardening in high-strength metals by nanofiller incorporation at grain boundaries,” Nano Lett. 18, 6255–6264 (2018).

    Article  CAS  Google Scholar 

  101. Y. Kim, J. Lee, M. S. Yeom, J. W. Shin, H. Kim, Y. Cui, J. W. Kysar, J. Hone, Y. Jung, S. Jeon, and S. M. Han, “Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites,” Nat. Commun. 4, 2114 (2013).

    Article  Google Scholar 

  102. I. A. Ovid’ko and A. G. Sheinerman, “Competition between plastic deformation and fracture processes in metal–graphene layered composites,” J. Phys. D 47, 495302 (2014).

    Article  Google Scholar 

  103. A. G. Sheinerman, “Modeling of structure and interface controlled strength of laminated metal/graphene composites,” Mech. Mater. 158, Art. 103888 (2021).

    Article  Google Scholar 

  104. S. Xiang, X. Wang, M. Gupta, K. Wu, X. Hu, and M. Zheng, “Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties,” Sci. Rep. 6, 38824 (2016).

    Article  CAS  Google Scholar 

  105. M. Khoshghadam-Pireyousefan, R. Rahmanifard, L. Orovcik, P. Švec, and V. Klemm, “Application of a novel method for fabrication of graphene reinforced aluminum matrix nanocomposites: Synthesis, microstructure, and mechanical properties,” Mater. Sci. Eng., A 772, 138820 (2020).

    Article  CAS  Google Scholar 

  106. O. Y. Kurapova, I. V. Lomakin, S. N. Sergeev, E. N. Solovyeva, A. P. Zhilyaev, I. Y. Archakov, and V. G. Konakov, “Fabrication of nickel–graphene composites with superior hardness,” J. Alloy Compd. 835, 155463 (2020).

    Article  CAS  Google Scholar 

  107. L. L. Zhu, C. S. Wen, C. Y. Gao, X. Guo, Z. Chen, and J. Lu, “Static and dynamic mechanical behaviors of gradient-nanotwinned stainless steel with a composite structure: Experiments and modeling,” Int. J. Plast. 114, 272–288 (2019).

    Article  CAS  Google Scholar 

  108. S. C. Cao, J. B. Liu, L. L. Zhu, L. Li, M. Dao, J. Lu, and R. O. Ritchie, “Nature-inspired hierarchical steels,” Sci. Rep. 8, 5088 (2018).

    Article  Google Scholar 

  109. Z. W. Ma, J. B. Liu, G. Wang, H. T. Wang, Y. J. Wei, and H. J. Gao, “Strength gradient enhances fatigue resistance of steels,” Sci. Rep. 6, 22156 (2016).

    Article  CAS  Google Scholar 

  110. X. L. Wu, M. X. Yang, F. P. Yuan, L. Chen, and Y. T. Zhu, “Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility,” Acta Mater. 112, 337–346 (2016).

    Article  CAS  Google Scholar 

  111. X. L. Wu, P. Jiang, L. Chen, F. P. Yuan, and Y. T. T. Zhu, “Extraordinary strain hardening by gradient structure,” Proc. Natl. Acad. Sci. U.S.A. 111, 7197–7201 (2014).

    Article  CAS  Google Scholar 

  112. Y. J. Wei, Y. Q. Li, L. C. Zhu, Y. Liu, X. Q. Lei, G. Wang, Y. X. Wu, Z. L. Mi, J. B. Liu, H. T. Wang, and H. J. Gao, “Evading the strength- ductility trade-off dilemma in steel through gradient hierarchical nanotwins,” Nat. Commun. 5, 3580 (2014).

    Article  Google Scholar 

  113. H. T. Wang, N. R. Tao, and K. Lu, “Architectured surface layer with a gradient nanotwinned structure in a Fe-Mn austenitic steel,” Scr. Mater. 68, 22–27 (2013).

    Article  CAS  Google Scholar 

  114. A. Y. Chen, H. H. Ruan, J. Wang, H. L. Chan, Q. Wang, Q. Li, and J. Lu, “The influence of strain rate on the microstructure transition of 304 stainless steel,” Acta Mater. 59, 3697–3709 (2011).

    Article  CAS  Google Scholar 

  115. T. H. Fang, W. L. Li, N. R. Tao, and K. Lu, “Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper,” Science 331, 1587–1590 (2011).

    Article  CAS  Google Scholar 

  116. H. T. Wang, N. R. Tao, and K. Lu, “Strengthening an austenitic Fe-Mn steel using nanotwinned austenitic grains,” Acta Mater. 60, 4027–4040 (2012).

    Article  CAS  Google Scholar 

  117. J. G. Kim, N. A. Enikeev, J. B. Seol, M. M. Abramova, M. V. Karavaeva, R. Z. Valiev, C. G. Park, and H. S. Kim, “Superior strength and multiple strengthening mechanisms in nanocrystalline TWIP steel,” Sci. Rep. 8, 11200 (2018).

    Article  Google Scholar 

  118. F. K. Yan, N. R. Tao, F. Archie, I. Gutierrez-Urrutia, D. Raabe, and K. Lu, “Deformation mechanisms in an austenitic single-phase duplex microstructured steel with nanotwinned grains,” Acta Mater. 81, 487–500 (2014).

    Article  CAS  Google Scholar 

  119. F. K. Yan, G. Z. Liu, N. R. Tao, and K. Lu, “Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles,” Acta Mater. 60, 1059–1071 (2012).

    Article  CAS  Google Scholar 

  120. K. Lu, F. K. Yan, H. T. Wang, and N. R. Tao, “Strengthening austenitic steels by using nanotwinned austenitic grains,” Scr. Mater. 66, 878–883 (2012).

    Article  CAS  Google Scholar 

  121. Y. S. Li, Y. Zhang, N. R. Tao, and K. Lu, “Effect of thermal annealing on mechanical properties of a nanostructured copper prepared by means of dynamic plastic deformation,” Scr. Mater. 59, 475–478 (2008).

    Article  CAS  Google Scholar 

  122. X. L. Wu, F. P. Yuan, M. X. Yang, P. Jiang, C. X. Zhang, L. Chen, Y. G. Wei, and E. Ma, “Nanodomained nickel unite nanocrystal strength with coarse-grain ductility,” Sci. Rep. 5, 11728 (2015).

    Article  Google Scholar 

  123. M. J. Shen, X. J. Wang, M. F. Zhang, M. Y. Zheng, and K. Wu, “Significantly improved strength and ductility in bimodal-size grained microstructural magnesium matrix composites reinforced by bimodal sized SiCp over traditional magnesium matrix composites,” Compos. Sci. Technol. 118, 85–93 (2015).

    Article  CAS  Google Scholar 

  124. K. S. Raju, V. S. Sarma, A. Kauffmann, Z. Hegedus, J. Gubicza, M. Peterlechner, J. Freudenberger, and G. Wilde, “High strength and ductile ultrafine-grained Cu–Ag alloy through bimodal grain size, dislocation density and solute distribution,” Acta Mater. 61, 228–238 (2013).

    Article  Google Scholar 

  125. G. Dirras, J. Gubicza, S. Ramtani, Q. H. Bui, and T. Szilagyi, “Microstructure and mechanical characteristics of bulk polycrystalline Ni consolidated from blends of powders with different particle size,” Mater. Sci. Eng., A 527, 1206–1214 (2013).

    Article  Google Scholar 

  126. Y. H. Zhao, T. Topping, J. F. Bingert, J. J. Thornton, A. M. Dangelewicz, Y. Li, W. Liu, Y. T. Zhu, Y. Z. Zhou, and E. L. Lavernia, “High tensile ductility and strength in bulk nanostructured nickel,” Adv. Mater. 20, 3028–3033 (2008).

    Article  CAS  Google Scholar 

  127. D. Witkin, Z. Lee, R. Rodriguez, S. Nutt, and E. Lavernia, “Al–Mg alloy engineered with bimodal grain size for high strength and increased ductility,” Scr. Mater. 49, 297–302 (2003).

    Article  CAS  Google Scholar 

  128. C. C. Koch, “Optimization of strength and ductility in nanocrystalline and ultrafine grained metals,” Scr. Mater. 49, 657–662 (2003).

    Article  CAS  Google Scholar 

  129. Y. M. Wang, M. W. Chen, F. H. Zhou, and E. Ma, “High tensile ductility in a nanostructured metal,” Nature 419, 912–915 (2002).

    Article  CAS  Google Scholar 

  130. V. L. Tellkamp, A. Melmed, and E. J. Lavernia, “Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy,” Metall. Mater. Trans. A 32, 2335–2343 (2001).

    Article  Google Scholar 

  131. A. Considère, « Memoire sur l’emploi du fer et de l’acier dans les constructions," Ann. Ponts Chaussées 9, 575–775 (1885).

    Google Scholar 

  132. Z. Liu, S. M. Zhang, J. R. Yang, J. Z. Liu, Y. L. Yang, and Q. S. Zheng, “Interlayer shear strength of single crystalline graphite,” Acta Mech. Sin. 28, 978–982 (2012).

    Article  CAS  Google Scholar 

  133. S. V. Bobylev, M. Y. Gutkin, and A. G. Scheinerman, “Yield strength of metal–graphene composites with a homogeneous and bimodal grain structure,” Mech. Solids 55, 22–31 (2020).

    Article  Google Scholar 

  134. E. I. Salama, A. Abbas, and A. M. K. Esawi, “Preparation and properties of dual-matrix carbon nanotube-reinforced aluminum composites,” Composites, Part A 99, 84–93 (2017).

    Article  CAS  Google Scholar 

  135. Z. Y. Liu, K. Ma, G. H. Fan, K. Zhao, J. F. Zhang, B. L. Xiao, and Z. Y. Ma, “Enhancement of the strength-ductility relationship for carbon nanotube/Al–Cu–Mg nanocomposites by material parameter optimisation,” Carbon 157, 602–613 (2020).

    Article  CAS  Google Scholar 

  136. X. Fu, Z. Tan, X. Min, Z. Li, Z. Yue, G. Fan, D.‑B. Xiong, and Z. Li, “Trimodal grain structure enables high-strength CNT/Al–Cu–Mg composites higher ductility by powder assembly & alloying,” Mater. Res. Lett. 9, 50–57 (2020).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 20-11-50084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Sheinerman.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheinerman, A.G. Mechanical Properties of Metal Matrix Composites with Graphene and Carbon Nanotubes. Phys. Metals Metallogr. 123, 57–84 (2022). https://doi.org/10.1134/S0031918X22010124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22010124

Keywords:

Navigation