Skip to main content
Log in

Formation Enthalpies and Dilution Heats of FCC–FCC Binary Alloys Using Modified Ones of EAM Potentials

  • THEORY OF METALS
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

We evaluated the formation enthalpies and the dilution heats of FCC–FCC (FCC: facet-centered cubic) binary alloys employing the modified ones of the embedded atom method (EAM) potentials for FCC metals. We have calculated the formation enthalpies in the whole composition range for 36 kinds of FCC–FCC binary alloys bearing FCC metals Ag, Al, Au, Cu, Ir, Ni, Pd, Pt, and Rh by the modified embedded atom method (MEAM) potentials for FCC metals proposed by Jin et al. [Appl. Phys. A120 (2015) 189], Johnson’s alloy potential form, and Vegard’s law. We have also modified the formulas to calculate the dilution heats of the binary alloy solutions using the MEAM potentials for FCC metals and evaluated the dilution heats of 72 kinds of FCC–FCC binary alloy solutions. The present results of the formation enthalpies and the dilution heats for all FCC–FCC binary alloys are in mainly agreement with the experimental data and the calculations by the Miedema theory. Our results agree with the experimental data and the Miedema theory results better than the precedent MEAM results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. S. Daw and M. I. Baskes, “Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals,” Phys. Rev. Lett. 50, 1285–1288 (1983).

    Article  CAS  Google Scholar 

  2. M. S. Daw and M. I. Baskes, “Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals,” Phys. Rev. B 29, 6443–6453 (1984).

    Article  CAS  Google Scholar 

  3. B. Zhang, W. Hu, and X. Shu, Theory of Embedded Atom Method and Its Application to Materials Science: Atomic Scale Materials Design Theory (Hunan University Press, Changsha, 2003) [in Chinese].

    Google Scholar 

  4. W. Hu, X. Shu, and B. Zhang, “Point-defect properties in body-centered cubic transition metals with analytic EAM interatomic potentials,” Comput. Mater. Sci. 23, 175–189 (2002).

    Article  CAS  Google Scholar 

  5. W. Hu, B. Zhang, B. Huang, F. Gao, and D. J. Bacon, “Analytic modified embedded atom potentials for HCP metals,” J. Phys. Condens. Matter 13, 1193–1213 (2001).

    Article  CAS  Google Scholar 

  6. X. Shu, PhD Thesis (Hunan University, Changsha, 2001).

  7. H.-S. Jin, J.-D. An, and Y.-S. Jong, “EAM potentials for BCC, FCC and HCP metals with farther neighbor atoms” Appl. Phys. A 120, 189–197 (2015).

    Article  CAS  Google Scholar 

  8. H.-S. Jin, J.-Y. Pak, and Y.-S. Jong, “Study on the properties of vacancies and phonon dispersions by the improved ones of the modified analytic embedded atom method potentials for Al, Ni, and Ir,” Appl. Phys. A 123, 257–264 (2017).

    Article  Google Scholar 

  9. C.-G. Jon, H.-S. Jin, and C.-J. Hwang, “Improvement of modified analytic embedded atom method potentials for noble metals and Cu,” Radiat. Eff. Defects Solids 172, 575–589 (2017).

    Article  CAS  Google Scholar 

  10. R. A. Johnson, “Alloy models with the embedded-atom method,” Phys. Rev. B 39, 12554–12559 (1989).

    Article  CAS  Google Scholar 

  11. B. Zhang and Y. Quyang, “Calculations of the thermodynamic properties for binary hcp alloys with simple embedded atom method model,” Z. Phys. B 92, 431–435 (1993).

    Article  CAS  Google Scholar 

  12. B. Zhang and Y. Quyang, “Theoretical calculation of thermodynamic data for bcc binary alloys with the embedded-atom method,” Phys. Rev. B 48, 3022–3029 (1993).

    CAS  Google Scholar 

  13. F. Fang, X. Shu, H. Deng, W. Hu, and M. Zhu, “Modified analytic EAM potentials for the binary immiscible alloy systems,” Mater. Sci. Eng., A 355, 357–367 (2003).

    Article  Google Scholar 

  14. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, and K. K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys (ASM Int., Metal Park, OH, 1973).

    Google Scholar 

  15. F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion in Metals: Transition Metals Alloys (North-Holland, Amsterdam, 1988).

    Google Scholar 

  16. M. I. Baskes, “Modified embedded-atom potentials for cubic materials and impurities,” Phys. Rev. B 46, 2727–2742 (1992).

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (U1360204) and National University’s Basic Research Foundation of China (N120602003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, H.S., Ho, S.N., Kong, R.S. et al. Formation Enthalpies and Dilution Heats of FCC–FCC Binary Alloys Using Modified Ones of EAM Potentials. Phys. Metals Metallogr. 122, 1264–1271 (2021). https://doi.org/10.1134/S0031918X21130135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21130135

Keywords:

Navigation