Skip to main content
Log in

A Critical Assessment on Rotary Friction Welded High Strength Armor Grade Aluminum Alloy Joints

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

A high strength aluminum alloy has been widely employed in aerospace industry because of its high specific strength to weight ratio. Earlier, the fusion welding of aluminum alloys resulted in solidification cracking and shrinkage defects. To eliminate these drawbacks, the solid-state welding processes have been preferred to join the components of parts of armor grade aluminum alloy. This paper is devoted to the analysis of the mechanical properties and metallurgical characteristics of rotary friction welded aluminum alloy joints produced under optimized conditions. The maximum recorded transverse tensile strength and joint efficiency is of 472 MPa and 86%, respectively. The microstructural features exhibited ultrafine grains in the region of a fully-deformed zone (FDZ) of the alloy. The deformed grains in the thermomechanical affected zone (TMAZ) were recorded to have lower microhardness. Although, the dispersed precipitates revealed from the weld cross section were Al7Cu2Fe, Mg3Cr2Al18, and MgZn2. From this investigation, it has been found that most of the weld failures occurred due to grain deformation and subsequent softening during solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Y. Yang, P. Hua, X. Li, K. Chen, et al., “Effect of multipass on microstructure and impact toughness of As-cast Al–20Si alloy via friction stir processing,” Phys. Met. Metallogr. 120, 1126–1132 (2019).

    Article  Google Scholar 

  2. E. D. Nicholas, “Friction processing technologies,” Weld. World 47, 2–9 (2003).

    Article  Google Scholar 

  3. M.B. Uday, et al., “Advances in friction welding process: a review,” Sci. Technol. Weld. Join. 15 (7), 534–558 (2010).

    Article  CAS  Google Scholar 

  4. A. Garg, M. Raturi, and A. Bhattacharya, “Strength, failure, and microstructure development for friction stir welded AA6061-T6 joints with different tool pin profiles,” CIRP J. Manuf. Sci. Technol. 29, 99–114 (2020).

    Article  Google Scholar 

  5. C. Yang, et al., “Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates,” J. Mater. Sci. Technol. 41, 105–116 (2020).

    Article  Google Scholar 

  6. S. A. Khodir and T. Shibayanagi, “Friction stir welding of dissimilar AA2024 and AA7075 aluminum alloys,” Mater. Sci. Eng., B 148 (1–3), 82–87 (2008).

    Article  CAS  Google Scholar 

  7. A. R. McAndrew, P. A. Colegrovea, et al., “A literature review of Ti–6Al–4V linear friction welding,” Prog. Mater. Sci. 92, 225–257 (2018).

    Article  CAS  Google Scholar 

  8. H. K. Rafi, G. D. Janaki Ram, G. Phanikumar, and K. Prasad Rao, “Microstructure and tensile properties of friction welded aluminum alloy AA7075-T6,” Mater. Des. 31 (5), 2375–2380 (2010).

    Article  CAS  Google Scholar 

  9. M. N. Ahmad Fauzi, M. B. Uday, H. Zuhailawati, and A. B. Ismail, “Microstructure and mechanical properties of alumina-6061 aluminum alloy joined by friction welding,” Mater. Des. 31 (2), 670–676 (2010).

    Article  CAS  Google Scholar 

  10. S. Rajakumar, C. Muralidharan, and V. Balasubramanian, “Influence of friction stir welding process and tool parameters on strength properties of AA7075-T6 aluminum alloy joints,” Mater. Des. 32 (2), 535–549 (2011).

    Article  CAS  Google Scholar 

  11. L. Fratini, G. Buffa, and R. Shivpuri, “Mechanical and metallurgical effects of in-process cooling during friction stir welding of AA7075-T6 butt joints,” Acta Mater. 58 (6), 2056–2067 (2010).

    Article  CAS  Google Scholar 

  12. I. Bhamji, et al., “Linear friction welding of aluminum to magnesium,” Sci. Technol. Weld. Joining 17 (5), 368–374 (2012).

    Article  CAS  Google Scholar 

  13. P. Sivaraj, M. Vinoth Kumar, and V. Balasubramanian, “Microstructural characteristics and tensile properties of linear friction-welded AA7075 aluminum alloy joints,” in Proceedings of ICEMMM 2018 Advances in Materials and Metallurgy (Springer-Verlag, Singapore, 2019), pp. 467–476.

  14. K. V. Jata, K. K. Sankaran, and J. J. Ruschau, “Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050-T7451,” Metall. Mater. Trans. A 31, 2181–2192 (2000).

    Article  Google Scholar 

  15. X. Y. Wang, W. Y. Li, T. J. Ma, and A. Vairis, “Characterization studies of linear friction welded titanium joints,” Mater. Des. 116, 115–126 (2017).

    Article  CAS  Google Scholar 

  16. A. Chamanfar, et al., “Mechanical property and microstructure of linear friction welded WASPALOY,” Metall. Mater. Trans. A 42, 729–744 (2011).

    Article  CAS  Google Scholar 

  17. M. Ilangovan, S. R. Boopathy, and V. Balasubramanian, “Microstructure and tensile properties of friction stir welded dissimilar AA6061–AA5086 aluminum alloy joints,” Trans. Nonferrous Met. Soc. China 25 (4), 1080–1090 (2015).

    Article  CAS  Google Scholar 

  18. R. K. R. Singh, C. Sharma, D. K. Dwivedi, N. K. Mehta, and P. Kumar, “The microstructure and mechanical properties of friction stir welded Al–Zn–Mg alloy in as-welded and heat treated conditions,” Mater. Des. 32 (2), 682–687 (2011).

    Article  CAS  Google Scholar 

  19. Y. Ji, Z. Chai, D. Zhao, and S. Wu, “Linear friction welding of Ti–5Al–2Sn–2Zr–4Mo–4Cr alloy with dissimilar microstructure,” J. Mater. Process. Technol. 214 (4), 979–987 (2014).

    Article  CAS  Google Scholar 

  20. C. Sharma, D. K. Dwivedi, and P. Kumar, “Influence of in-process cooling on tensile behavior of friction stir welded joints of AA7039,” Mater. Sci. Eng., A 556, 479–487 (2012).

    Article  CAS  Google Scholar 

  21. N. R. J. Hynes and P. S. Velu, “Effect of rotational speed on Ti–6Al–4V–AA 6061 friction welded joints,” J. Manuf. Process. 32, 288–297 (2018).

    Article  Google Scholar 

  22. P.-H. Geng, G.-L. Qin, Z. Jun, and C.-A. Li, “Parametric optimization, and microstructural characterization of friction welded aeronautic aluminum alloy 2024,” Trans. Nonferrous Met. Soc. China 29 (12), 2483–2495 (2019).

    Article  CAS  Google Scholar 

  23. P. Sivaraj, P. Hariprasath, C. Rajarajan, and V. Balasubramanian, “Analysis of grain refining and subsequent coarsening along on adjacent zone of friction stir welded armor grade aluminum alloy joints,” Mater. Res. Express 6 (6), 066566 (2019).

    Article  CAS  Google Scholar 

  24. Z. Barlas and U. Ozsarac, “Effects of FSW parameters on joint properties of AlMg3 alloy,” Weld. J. 91 (1), 16–22 (2012).

    Google Scholar 

  25. Y. S. Sato and H. Kokawa, “Distribution of tensile property and microstructure in friction stir weld of 6063 aluminum,” Metall. Mater. Trans. A 32, 3023–3031 (2001).

    Article  Google Scholar 

  26. K. V. Jata and S. L. Semiatin, “Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys,” Scr. Mater. 43, 743–749 (2000).

    Article  CAS  Google Scholar 

  27. S. R. S. Bharathi, R. Rajeshkumar, A. Razal Rose, and V. Balasubramanian, “Mechanical properties and microstructural characteristics of friction welded dissimilar joints of aluminum alloys,” Trans. Indian Inst. Met. 71, 91–97 (2018).

    Article  CAS  Google Scholar 

  28. X. Li, et al., “Effect of rotation speed on friction behavior of rotary friction welding of AA6061-T6 aluminum alloy,” Weld. World 62, 923–930 (2018).

    Article  CAS  Google Scholar 

  29. L. Fratini, G. Buffa, M. Cammalleri, and D. Campanella, “On the linear friction welding process of aluminum alloys: Experimental insights through process monitoring,” CIRP Ann. 62 (1), 295–298 (2013).

    Article  Google Scholar 

  30. S. D. Ji, Y. Y. Jin, Y. M. Yue, S. S. Gao, Y. X. Huang, and L. Wang, “Effect of temperature on material transfer behavior at different stages of friction stir welded 7075-t6 aluminum alloy,” J. Mater. Sci. Technol. 29 (10), 955–960 (2013).

    Article  CAS  Google Scholar 

  31. J. He, Z. Ling, and H. Li, “Effect of tool rotational speed on residual stress, microstructure, and tensile properties of friction stir welded 6061-T6 aluminum alloy thick plate,” Int. J. Adv. Manuf. Technol. 84, 1953–1961 (2016).

    Article  Google Scholar 

  32. P. Sivaraj, D. Kanagarajan, and V. Balasubramanian, “Effect of post-weld heat treatment on tensile properties and microstructure characteristics of friction stir welded armor grade AA7075-T651 aluminum alloy,” Def. Technol. 10 (1), 1–8 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Hariprasath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hariprasath, P., Sivaraj, P. & Balasubramanian, V. A Critical Assessment on Rotary Friction Welded High Strength Armor Grade Aluminum Alloy Joints. Phys. Metals Metallogr. 122, 1401–1408 (2021). https://doi.org/10.1134/S0031918X21130044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21130044

Keywords:

Navigation