Skip to main content
Log in

Study of the Mechanical Properties of NiTi Modified by Carbon Plasma Immersion Ion Implantation Using Nano-Indentation Test and Finite Element Method Simulation

  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript


Plasma immersion ion implantation is one of the common methods to enhance the corrosion resistance, mechanical properties, and biological characteristics of NiTi alloys. Herein, the nano-mechanical behavior and distribution of compressive and tensile stress of NiTi alloy samples modified by carbon plasma immersion ion implantation (C-PIII) are analyzed by atomic force microscopy (AFM), nano-indentation test, and finite element method (FEM) simulation. C-PIII produces a modified layer with a thickness of 48 nm. The average surface roughness decreases from 34.023 to 25.180 nm and the hardness and Young’s modulus increase to 80.7 and 21.8%, respectively, after C-PIII. FEM simulation reveals that elastic and plastic deformation similar to that observed experimentally arises from the increase in strength and changes in the surface phases stemming from C-PIII. The larger Young’s modulus and hardness of the C-PIII sample reduces the penetration depth and plastic strain during nano-indentation resulting in a decrease of the compressive residual stress by 46% from –0.619 to –0.313 GPa at the tip of the indenter. Our results show that the durability and service lifetime of NiTi alloys can be improved by C-PIII thus boding well for biomedical applications in harsh environments such as blood vessel stents and bone joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others


  1. S. A. Shabalovskaya, “Surface, corrosion and biocompatibility aspects of Nitinol as an implant material,” Biomed. Mater. Eng. 12, 69–109 (2002).

    CAS  Google Scholar 

  2. Y. L. Pei and Y. Luan, “Surface modification of NiTi alloys using nitrogen doped diamond-like carbon coating fabricated by plasma immersion ion implantation and deposition,” J. Alloys Compd. 581, 873–876 (2013).

    Article  CAS  Google Scholar 

  3. J. Witkowska, A. Sowi’nska, E. Czarnowska, T. Płoci’nski, T. Borowski, and T. Wierzcho’n, “NiTi shape-memory alloy oxidized in low-temperature plasma with carbon coating: Characteristic and a potential for cardiovascular applications,” Appl. Surf. Sci. 421, 89–96 (2017).

    Article  CAS  Google Scholar 

  4. T. Yoneyama and S. Miyazahi, Shape Memory Alloys for Biomedical Aplications (Woodhead, Cambridge, 2008).

    Google Scholar 

  5. N. B. Morgan, “Medical shape memory alloy applications—the market and its products,” Mater. Sci. Eng., A 378, 16–23 (2004).

    Article  Google Scholar 

  6. M. H. Elahinia, M. Hashemi, M. Tabesh, and S. B. Bhaduri, “Manufacturing and processing of NiTi implants: A review,” Prog. Mater. Sci. 57, 911–946 (2012).

    Article  CAS  Google Scholar 

  7. W. Haider, “Enhanced biocompatibility of NiTi (Nitinol) via surface treatment and allying,” PhD Disseration (Florida International University, 2010).

    Google Scholar 

  8. M. Es-Souni and H. Fischer-Brandies, “Assessing the biocompatibility of NiTi shape memory alloys used for medical applications,” Anal. Bioanal. Chem. 381, 557–567 (2005).

    Article  CAS  Google Scholar 

  9. D. A. Armitage, T. L. Parker, and D. M. Grant, “Biocompatibility and hemocompatibility of surface-modified NiTi alloys,” J. Biomed. Mater. Res. A 66, 129–137 (2003).

    Article  Google Scholar 

  10. E. Denkhaus and K. Salnikow, “Nickel essentiality toxicity, and carcinogenicity,” Crit. Rev. Oncol. Hematol. 42, 35–56 (2002).

    Article  CAS  Google Scholar 

  11. C. L. Liu, Y. C. Xin, X. B. Tian and P. K. Chu, “Corrosion behavior of AZ91 magnesium alloy treated by plasma immersion ion implantation and deposition in artificial physiological fluids,” Thin Solid Films 516, 422–427 (2007).

    Article  CAS  Google Scholar 

  12. K. G. Kostov, M. Ueda, A. Lepiensky, P. C. Soares, G. F. Gomes, M. M. Silva and H. Reuther, “Surface modification of metal alloys by plasma immersion ion implantation and subsequent plasma nitriding,” Surf. Coat. Technol. 186, 204–208 (2004).

    Article  CAS  Google Scholar 

  13. X. Y. Liu, R. W. Y. Poon, S. C. H. Kwok, P. K. Chu, and C. X. Ding, “Structure and properties of Ca-plasma-implanted titanium,” Surf. Coat. Technol. 191, 43–48 (2005).

    Article  CAS  Google Scholar 

  14. W. Zhang, P. K. Chu, J. H. Ji, Y. H. Zhang, X. Y. Liu, R. K. Y. Fu, P. C. T. Ha, and Q. Yan, “Plasma surface modification of poly vinyl chloride for improvement of antibacterial properties,” Biomaterials 27, 44–51(2006).

    Article  Google Scholar 

  15. W. Zhang, Y. H. Zhang, J. H. Ji, Q. Yan, A. P. Huang, and P. K. Chu, “Antimicrobial polyethylene with controlled copper release,” J. Biomed. Mater. Res. A 83, 838–844 (2007).

    Article  Google Scholar 

  16. R. C. Powles, D. R. McKenzie, S. J. Meure, M. V. Swain, and N. L. James, “Nanoindentation response of PEEK modified by mesh-assisted plasma immersion ion implantation,” Surf. Coat. Technol. 201, 7961–7969 (2007).

    Article  CAS  Google Scholar 

  17. A. S. Alaboodi and Z. Hussain, “Finite element modeling of nano-indentation technique to characterize thin film coatings,” J. King Saud Univ. Sci. 31, 61–69 (2019).

    Google Scholar 

  18. A. Karimzadeh, M. R. Ayatollahi and M. Alizadeh, “Finite element simulation of nano-indentation experiment on aluminum1100,” Comput. Mater. Sci. 81, 595–600 (2014).

    Article  CAS  Google Scholar 

  19. J. J. Kang, A. A. Becker, and W. Sun, “Determining elastic–plastic properties from indentation data obtained from finite element simulations and experimental results,” Int. J. Mech. Sci. 62, 34–46 (2012).

    Article  Google Scholar 

  20. M. Dao, N. Chollacoop, K. J. VanVliet, T. A. Venkatesh, and S. Suresh, “Computational modeling of the forward and reverse problems in instrumented sharp indentation,” Acta Mater. 49, 3899–3918 (2001).

    Article  CAS  Google Scholar 

  21. A. Yeo, Y. S. Chan, F. Che, M. Liuand, and K. Zhou, “A combined experimental and modelling study of indentation damage test on thin-film stacked structures,” Thin Solid Films 615, 74–83 (2016).

    Article  CAS  Google Scholar 

  22. Z. Swiatek, M. Michalec, N. Levintant-Zayonts, J. Bonarski, A. Budziak, O. Bonchyk, and G. Savitskij, “Structural evolution of near-surface layers in NiTi alloy caused by an ion implantation,” Acta Phys. Pol. 120, 75–78 (2011).

    Article  CAS  Google Scholar 

  23. A. Shanaghi and P. K. Chu, “Investigation of corrosion mechanism of NiTi modified by carbon plasma immersion ion implantation (C-PIII) by electrochemical impedance spectroscopy,” J. Alloys Compd. 790, 1067–1075 (2019).

    Article  CAS  Google Scholar 

  24. A. Shanaghi and P. K. Chu, “Enhancement of mechanical properties and corrosion resistance of NiTi alloy by carbon plasma immersion ion implantation,” Surf. Coat. Technol. 365, 52–57 (2019).

    Article  CAS  Google Scholar 

  25. T. S. Li, H. Li, and F. Pan, “Microstructure and nanoindentation hardness of Ti/TiN multilayered films,” Surf. Coat. Technol. 137, 225–229 (2001).

    Article  CAS  Google Scholar 

  26. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 7, 1564–1583 (1992).

    Article  CAS  Google Scholar 

  27. X. Li and B. Bhushan, “A review of nanoindentation continuous stiffness measurement technique and its applications,” Mater. Charact. 48, 11–36 (2002).

    Article  CAS  Google Scholar 

  28. A. Karimzadeh, M. R. Ayatollahi and A. Rahimi, “Computer simulation and experimental analysis of nanoindentation technique,” in Applied Nanoindentation in Advanced Materials, Ed. by A. Tiwari and S. Natarajan (Wiley, 2017), pp. 579–600.

    Book  Google Scholar 

  29. A. Shanaghi, A. R. Sabour Rouhaghdam, S. Ahangarani, and P. K. Chu, “Effect of plasma CVD operating temperature on nanomechanical properties of TiC nanostructured coating investigated by atomic force microscopy,” Mater. Res. Bull. 47, 2200–2205 (2012).

    Article  CAS  Google Scholar 

  30. P. Huu Le, S. P. Chiu, S. R. Jian, Ch. Wei Luo, J. Y. Lin, J. J. Lin, K. H. Wu, and M. Gospodinov, “Nanomechanical, structural, and transport properties of Bi3Se2Te thin films,” J. Alloys Compd. 679, 350–357 (2016).

    Article  Google Scholar 

Download references


The work was financially supported by Malayer University Research grant no. 1397, Hong Kong Research Grants Council (RGC) General Research Funds (GRF) no. CityU 11205617, City University of Hong Kong Strategic Research Grant (GRF) no. 7005264, as well as Guangdong—Hong Kong Technology Cooperation Funding Scheme (TCFS) GHP/085/18SZ (CityU 9440230).

Author information

Authors and Affiliations


Corresponding authors

Correspondence to A. Shanaghi or A. R. Souri.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanaghi, A., Siyavoshi, A., Souri, A.R. et al. Study of the Mechanical Properties of NiTi Modified by Carbon Plasma Immersion Ion Implantation Using Nano-Indentation Test and Finite Element Method Simulation. Phys. Metals Metallogr. 123, 1395–1401 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: