Skip to main content
Log in

A Study of the Structure and Physicomechanical Properties of Promising High-Strength Economically Alloyed Steel for Oil and Gas Production Pipes Operating under Extreme Conditions

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The results of studying the structure and mechanical and magnetic properties of a promising high-strength economically alloyed steel for oil and gas production pipes, which are subject to the requirements of increased strength and resistance to sulfide cracking under stress, are reported. The effect of the level of applied normal stresses on the magnetic characteristics of the examined steel is also studied. The parameters that can be used in the future for developing methods for nondestructive diagnostics of the current state during operation of the parts and structural elements made of this kind of materials are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. I. Yu. Pyshmintsev, I. N. Veselov, B. A. Erekhinskii, V. I. Chernukhin, and A. G. Shiryaev, “New developments of high strength corrosion resistant pipes for environments containing hydrogen sulfide,” Truboprovodnyi Transport: Teoriya i Praktika, No. 5, 26–31 (2016).

    Google Scholar 

  2. T. Omura, M. Numata, and M. Ueda, “Super-high strength low-alloy steel OCTG with improved sour resistance,” Ferrum Bull. Iron Steel Inst. Jpn. 14, No. 9, 575–579 (2009).

    CAS  Google Scholar 

  3. Y. Fujii, “OCTG pipes with high corrosion resistance, providing development of natural gas wells,” Ferrum Bull. Iron Steel Inst. Jpn. 14, No. 9, 568–572 (2009).

    Google Scholar 

  4. H. Wang, Y. Ge, and L. Shi, “Technologies in deep and ultra-deep well drilling: Present status, challenges and future trend in the 13th Five-Year Plan period (2016–2020),” Nat. Gas Ind. B 4, No. 5, 319–326 (2017).

    Article  Google Scholar 

  5. M. Liu, C. D. Yang, etc., “Effect of microstructure and crystallography on sulfide stress cracking in API-5CT-C110 casing steel,” Mater. Sci. Eng., A 671, 244–253 (2016).

    Article  CAS  Google Scholar 

  6. O. Enyinnaya, O. Joseph, K. M. Mostafijur Rahman, and S. Jerzy, “Effect of post-processing annealing treatments on microstructure development and hydrogen embrittlement in API 5L X70 pipeline steel,” Mater. Charact. 161, 110–124 (2020).

    Google Scholar 

  7. I. Yu. Pyshmintsev, I. N. Veselov, A. G. Shiryaev, B. A. Erekhinskii, V. I. Chernukhin, and A. B. Arabei, “Development of corrosion-resistant pipes for environments containing hydrogen sulfide,” Territoriya Neftegaz, No. 78, 62–71 (2016).

    Google Scholar 

  8. L. I. Efron, Metal Science in “High” Metallurgy. Pipe Steels (Metallurgizdat, Moscow, 2012) [in Russian].

    Google Scholar 

  9. D. A. Pumpyanskii, I. Yu. Pyshmintsev, and V. M. Farber, “Strengthening pipe steel,” Steel Transl. 35, No. 7, 47–56 (2005).

    Google Scholar 

  10. E. Ramirez, J. G. Gonzalez-Rodriguez, A. Torres-Islas, S. Serna, B. Campillo, G. Dominguez-Patiño, and J. A. Juárez-Islas, “Effect of microstructure on the sulphide stress cracking susceptibility of a high strength pipeline steel,” Corros. Sci. 50, No. 12, 3534–3541 (2008).

    Article  CAS  Google Scholar 

  11. Z. Dezhi, C. Rui, Z. Zhi, S. Liyun, L. Guoping, T. Gang, and S. Taihe, “Research on stress corrosion sensitivity of C110 casing in wellbore protection fluid,” Energy Procedia 16, 816–821 (2012).

    Article  Google Scholar 

  12. C. Mendibide and T. Sourmail, “Composition optimization of high-strength steels for sulfide stress cracking resistance improvement,” Corros. Sci. 51, No. 12, 2878–2884 (2009).

    Article  CAS  Google Scholar 

  13. G. Xishui, S. Taihe, Z. Zhi, and M. Biao, “Stress corrosion cracking behavior of high strength casing steel in working fluids,” J. Nat. Gas Sci. Eng. 29, 134–140 (2016).

    Article  Google Scholar 

  14. ANCI/NACE TM0175/ISO15156-1 Petroleum and Natural Gas Industries – Materials for Use in H 2 S-Containing Environments in Oil and Gas Production. Part 1: General principles for selection of cracking-resistant materials (NACE International, 2009).

  15. Z. H. Zhang, M. Liu, Y. H. Liu, M. Luo, C. X. Zhang, C. H. Wang, and G. H. Cao, “A systematical analysis with respect to multiple hydrogen traps influencing sulfide stress cracking behavior of API-5CT-C110 casing steel,” Mater. Sci. Eng., A 721, 81–88 (2018).

    Article  CAS  Google Scholar 

  16. G. M. Pressouyre and I. M. Bernshein, “Quantative analysis of hydrogen trapping,” Metall. Trans. A 9, 1571–1580 (1978).

    Article  Google Scholar 

  17. J. P. Hirth, “Effects of hydrogen on the properties of iron and steel,” Metal. Trans. A 11, 861–890 (1980).

    Article  Google Scholar 

  18. GOST 31446-2017 (ISO 11960:2014) Steel Casing and Tubing Pipes for the Oil and Gas Industry. General Technical Conditions (Standartinform, Moscow, 2017).

  19. ANCI/NACE TM0177 Standard Test Method. Laboratory tests of metals for resistance to sulfide stress cracking and stress corrosion cracking in H2S containing media-2016 (NACE International, 2016).

    Google Scholar 

  20. A. A. Rusakov, X-ray Study of Metals (Atomizdat, Moscow, 1977) [in Russian].

    Google Scholar 

  21. G. P. Anastasiadi and M. V. Sil’nikov, Inhomogeneity and Performance Capability of Steels (OOO Izd-vo “Poligon”, St. Petersburg, 2002) [in Russian].

  22. E. S. Gorkunov, E. A. Putilova, S. M. Zadvorkin, A. V. Makarov, N. L. Pecherkina, G. Yu. Kalinin, S. Yu. Mushnikova, and O. V. Fomina, “Behavior of magnetic characteristics in promising nitrogen-containing steels upon elastoplastic deformation,” Phys. Met. Metallogr. 116, No. 8, 838–849 (2015).

    Article  Google Scholar 

  23. E. S. Gorkunov, S. M. Zadvorkin, E. A. Putilova, and R. A. Savrai, “Effect of the structure and stress state on the magnetic properties of metal in different zones of welded pipes of large diameter,” Phys. Met. Metallogr. 115, No. 10, 949–956 (2014).

    Article  Google Scholar 

  24. B. I. Miroshnichenko, “The role of a stressed state in the formation of stress-corrosion flaws in pipelines,” Russ. J. Nondestr. Test. 44, No. 6, 403–408 (2008).

    Article  Google Scholar 

  25. M. Roskosz and K. Fryczowski, “Magnetic methods of characterization of active stresses in steel elements,” J. Magn. Magn. Mater. 499, 166–272 (2020).

    Article  Google Scholar 

  26. H.-E. Chen, S. Xie, Z. Chen, T. Takagi, T. Uchimoto, and K. Yoshihara, “Quantitative nondestructive evaluation of plastic deformation in carbon steel based on electromagnetic methods,” Mater. Trans. 55, No. 12, 1806–1815 (2014).

    Article  CAS  Google Scholar 

  27. A. P. Nichipuruk, A. N. Stashkov, V. N. Kostin, and M. K. Korkh, “Possibilities of magnetic inspection of plastic deformations preceding failures of low-carbon steels constructions,” Russ. J. Nondestr. Test. 45, No. 9, 616–622 (2009).

    Article  CAS  Google Scholar 

  28. E. S. Gorkunov, A. M. Povolotskaya, S. M. Zadvorkin, and E. A. Putilova, “Comparative analysis of the magnetic characteristics of plastically deformed metal in different zones of a welded pipe under elastic deformation,” Russ. J. Nondestr. Test. 53, No. 9, 636–643 (2017).

    Article  CAS  Google Scholar 

  29. S. V. Vonsovsky and Ya. S. Schur, Ferromagnetizm (OGIZ, 1948).

    Google Scholar 

  30. R. M. Bozorth, Ferromagnetism (Van Nostrand, New York, 1951).

    Google Scholar 

  31. E. S. Gorkunov, S. M. Zadvorkin, and E. A. Putilova, “Magnetic estimation of stresses applied to a two-layer steel St3-steel 08Cr18Ni10Ti composite material during elastoplastic deformation by uniaxial tension,” Russ. J. Nondestr. Test. 48, No. 8, 495–504 (2012).

    Article  CAS  Google Scholar 

  32. E. S. Gorkunov, S. M. Zadvorkin, E. A. Kokovikhin, E. A. Tueva, Yu. V. Subachev, L. S. Goruleva, and A. V. Podkopytova, “The effects of deformations by rolling and uniaxial tension on the structure and the magnetic and mechanical properties of Armco iron, steel 12Cr18Ni10Ti, and a Steel 12Cr18Ni10Ti-Armco Iron-Steel 12Cr18Ni10Ti composite material,” Russ. J. Nondestr. Test. 47, No. 6, 369–380 (2011).

    Article  CAS  Google Scholar 

  33. E. S. Gorkunov, Y. V. Subachev, A. M. Povolotskaya, and S. M. Zadvorkin, “The influence of an elastic uniaxial deformation of a medium-carbon steel on its magnetostriction in the longitudinal and transverse directions,” Russ. J. Nondestr. Test. 49, No. 10, 584–594 (2013).

    Article  Google Scholar 

  34. E. S. Gorkunov, Yu. V. Subachev, A. M. Povolotskaya, and S. M. Zadvorkin, “The influence of a preliminary plastic deformation on the behavior of the magnetic characteristics of high strength controllably rolled pipe steel under an elastic uniaxial tension (compression),” Russ. J. Nondestr. Test. 51, No. 9, 563–572 (2015).

    Article  CAS  Google Scholar 

  35. E. S. Gorkunov, A. M. Povolotskaya, S. M. Zadvorkin, and E. A. Putilova, “Comparative analysis of the magnetic characteristics of plastically deformed metal in different zones of a welded pipe under elastic deformation,” Russ. J. Nondestr. Test. 53, No. 9, 636–643 (2017).

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 20-79-00045. The equipment of Center for Collective Use Plastometriya was used in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Putilova.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Putilova, E.A., Zadvorkin, S.M., Veselov, I.N. et al. A Study of the Structure and Physicomechanical Properties of Promising High-Strength Economically Alloyed Steel for Oil and Gas Production Pipes Operating under Extreme Conditions. Phys. Metals Metallogr. 122, 923–930 (2021). https://doi.org/10.1134/S0031918X21090118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21090118

Keywords:

Navigation