Skip to main content
Log in

NMR Study of Cobalt-Containing Nanowires of Various Types

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Using the template synthesis method, nanowires (NWs) of various types are prepared from pure cobalt, an alloy of cobalt with copper, and layered structures comprised of alternating cobalt layers of various thicknesses and copper interlayers. Using the method of nuclear magnetic resonance (NMR) on 59Co nuclei, structural features of the arrays have been investigated. It is established that fcc and hcp Co phases are present in single-component NWs; the addition of copper ions to the electrolyte leads to almost complete disappearance of the hcp Co phase in the NW. Parameters that characterize the structure of interlayer boundaries of layered NWs with different layer thicknesses are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. C. R. Martin, “Nanomaterials: A membrane-based synthetic approach,” Science 266, 1961–1966 (1994).

    Article  CAS  Google Scholar 

  2. V. M. Prida, J. Garcı ́a, B. Hernando, C. Bran, L. G. Vivas, and M. Va ́zquez, “Electrochemical synthesis of magnetic nanowires with controlled geometry and magnetic anisotropy,” in Magnetic Nano- and Microwires. 1st ed. Design, Synthesis and Applications, Ed. by M. Vazquez (Elsevier, Amsterdam, 2015).

  3. V. E. Borisenko, A. L. Danilyuk, and D. B. Migas, Spinotronics (Binom. Laboratoriya Znanii, Moscow, 2017).

    Google Scholar 

  4. L. Piraux, J. M. George, J. F. Despres, C. Leroy, E. Ferain, R. Legras, K. Ounadjela, and A. Fert, “Giant magnetoresistance in magnetic multilayered nanowires,” Appl. Phys. Lett. 65, 2484 (1994).

    Article  CAS  Google Scholar 

  5. A. Blondel, J. Meier, B. Doudin, and J. Ansermet, “Giant magnetoresistance of nanowires of multilayers,” Appl. Phys. Lett. 65, 3019 (1994).

    Article  CAS  Google Scholar 

  6. K. Liu, K. Nagodawithana, P. Searson, and C. Chien, “Perpendicular giant magnetoresistance of multilayered Co/Cu nanowires,” Phys. Rev. B 51, 7381–7385 (1995).

    Article  CAS  Google Scholar 

  7. A. Blondel, B. Doudin, and J. Ph. Ansermet, “Comparative study of the magnetoresistance of electrodeposited Co/Cu multilayered nanowires made by single and dual bath techniques,” J. Magn. Magn. Mater. 165, 34–37 (1997).

    Article  CAS  Google Scholar 

  8. A. Blondel, J. Meier, B. Doudin, J. Ph. Ansermet, K. Attenborough, P. Evans, R. Hart, G. Nabiyouni, and W. Schwarzacher, “Wireshaped magnetic multilayers for ‘current perpendicular to plane’ magnetoresistance measurements,” J. Magn. Magn. Mater. 148, 317–318 (1995).

    Article  CAS  Google Scholar 

  9. S. Dubois, E. Chassaing, J. L. Duvail, L. Piraux, and M. G. Waals, “Preparation and characterization of electrodeposited Fe and Fe/Cu nanowires,” J. Chim. Phys. 96, 1316–1331 (1999).

    Article  CAS  Google Scholar 

  10. P. R. Evans, G. Yi, and W. Schwarzacher, “Current perpendicular to plane giant magnetoresistance of multilayered nanowires electrodeposited in anodic aluminum oxide membranes,” Appl. Phys. Lett. 76, No. 4, 481–483 (2000).

    Article  CAS  Google Scholar 

  11. L. Diez Herrera and D. Ravelosona, “Controlling magnetism by interface engineering,” in Magnetic Nano- and Microwires. 2nd ed. Design, Synthesis and Applications, Ed. by M. Vazquez (Elsevier, Amsterdam, 2020).

  12. Yu. P. Ivanov, A. Chuvilin, S. Lopatin, and J. Kosel, “Modulated magnetic nanowires for controlling domain wall motion: Toward 3D magnetic memories,” ACS Nano. 10, No. 5, 5326–5332 (2016).

    Article  CAS  Google Scholar 

  13. B. Zhang and P.-X. Gao, “Metal oxide nanoarrays for chemical sensing: A review of fabrication methods, sensing modes, and their inter-correlations, Front. Mater. 12, 58–63 (2019). https://doi.org/10.3389/fmats.2019.00055

    Article  Google Scholar 

  14. O. Lupan, V. Postica, V. Cretu, N. Wolff, V. Duppel, L. Kienle, and R. Adelung, “Single and networked CuO nanowires for highly sensitive p-type semiconductor gas sensor applications,” Phys. Status Solidi RRL 10, 260–266 (2016).

    Article  CAS  Google Scholar 

  15. K. Zhang, F. Wu, Y. Jiao, M. Sun, Y. Xia, and A. Xie, “The synthesis of core–shell nanowires with intense dielectric and magnetic resonance properties at microwave frequency,” J. Mater. Chem. C 7, 3590–3597 (2019).

    Article  CAS  Google Scholar 

  16. O. M. Zhigalina, I. M. Doludenko, D. N. Khmelenin, D. L. Zagorskiy, S. A. Bedin, and I. M. Ivanov, “Structure of Cu/Ni nanowires obtained by matrix synthesis,” Crystallogr. Rep. 63, No. 3, 480–484 (2018).

    Article  CAS  Google Scholar 

  17. D. L. Zagorskii, I. M. Doludenko, D. A. Cherkasov, O. M. Zhigalina, D. N. Khmelenin, I. M. Ivanov, A. A. Bukharaev, D. A. Bizyaev, R. I. Khaibullin, and S. A. Shatalov, “Layered nanowires—template synthesis, structure, and magnetic properties of layered nanowires,” Phys. Solid State 61, 1634–1645 (2019).

    Article  CAS  Google Scholar 

  18. S. A. Chuprakov, T. P. Krinitsina, N. S. Bannikova, I. V. Blinov, S. V. Verkhovskii, M. A. Milyaev, V. V. Popov, and V. V. Ustinov, “Interface structure and magnetoresistance studies of [Co/C]n superlattices by means of NMR and TEM,” Solid State Phenom. 215, 358–364 (2014).

    Article  Google Scholar 

  19. S. A. Chuprakov, N. S. Bannikova, I. V. Blinov, T. P. Krinitsina, M. A. Milyaev, V. V. Popov, and V. V. Ustinov, “Investigation of interfaces of multilayer Co/Cu structures using the method of nuclear magnetic resonance,” Phys. Met. Metallogr. 116, 136–140 (2015).

    Article  Google Scholar 

  20. S. A. Chuprakov, N. S. Bannikova, I. V. Blinov, T. P. Krinitsina, M. A. Milyaev, V. V. Popov, and V. V. Ustinov, “Study of the structure of interlayer boundaries in [Co/Cu]10 superlattices by methods of NMR and X-ray reflectometry,” Phys. Met. Metallogr. 117, 1192–1197 (2016).

    Article  CAS  Google Scholar 

  21. S. A. Chuprakov, N. S. Bannikova, I. V. Blinov, T. P. Krinitsina, M. A. Milyaev, V. V. Popov, M. V. Rya-bukhina, and V. V. Ustinov, “Influence of the interface state on the magnetoresistive properties of Co/Cu superlattices,” Phys. Met. Metallogr. 119, 309–315 (2018).

    Article  CAS  Google Scholar 

  22. V. V. Popov, N. S. Bannikova, I. V. Blinov, S. A. Chuprakov, T. P. Krinitsina, M. A. Milyaev, and V. V. Ustinov, “NMR studies of interlayer boundaries in Co/Cu superlattices,” J. Phys: Conf. Ser. 1389, 12159–12165 (2019).

    CAS  Google Scholar 

  23. S. A. Chuprakov, T. P. Krinitsina, N. S. Bannikova, I. V. Blinov, M. A. Milyaev, V. V. Popov, and V. V. Ustinov, “Nuclear magnetic resonance and X-ray reflectometry of Co/Cu superlattices,” Appl. Magn. Reson. 50, 415–423 (2019).

    Article  CAS  Google Scholar 

  24. Y. P. Ivanov, J. Leliaert, A. Crespo, M. Pancaldi, C. Tollan, J. Kosel, A. Chuvilin, and P. Vavassori, “Design of intense nanoscale stray fields and gradients at magnetic nanorod interfaces,” ACS Appl. Mater. Interfaces 11, No. 4, 4678–4685 (2019).

    Article  CAS  Google Scholar 

  25. H. A. M. Gronckel, K. Kopinga, W. J. M. Jonge, P. Panissod, J. P. Schille, and F. J. A. Broeder, “Nanostructure of Co/Cu multilayers,” Phys. Rev. B 44, No. 16, 9100–9103 (1991).

    Article  Google Scholar 

  26. P. Panissod, “Structural and magnetic investigations of ferromagnets by NMR. Application to magnetic metallic multilayers,” in Frontiers in Magnetism of Reduced Dimension Systems. NATO ASI Series (3. High Technology), Ed. by V. G. Bar’yakthar, P. E. Wigen, and N. A. Lesnik (Springer, Dordrecht,1998), Vol. 49. https://doi.org/10.1007/978-94-011-5004-0_10

  27. H. Xianghua, L. Qingfang, W. Jianbo, L. Shiliang, R. Yong, L. Ronglin, and L. Fashen, “Influence of crystal orientation on magnetic properties of hcp Co nanowire arrays,” J. Phys. D: Appl. Phys. 42, 095005–095010 (2009). https://doi.org/10.1088/0022-3727/42/9/095005

    Article  CAS  Google Scholar 

  28. L. Vila, J. M. George, G. Faini, A. Popa, U. Ebels, K. Ounadjela, and L. Piraux, “Transport and magnetic properties of isolated cobalt nanowires,” IEEE Trans. Magn. 38, No. 16, 2577–2579 (2002). https://doi.org/10.1109/TMAG.2002.801957

    Article  CAS  Google Scholar 

  29. J. R. Roos, J.-P. Celis, and M. De Bonte, “Electrodeposition of metals and alloys,” in Materials Science and Technology: A Comprehensive Treatment, Ed. by R. W. Cahn, P. Haasen, E. J. Kramer, (Wiley, New York, 1991).

    Google Scholar 

  30. F. Li, T. Wang, L. Ren, and J. Sun, “Structure and magnetic properties of Co nanowires inself-assembled arrays,” J. Phys.: Condens. Matter. 16, 8053–8060 (2004).

    CAS  Google Scholar 

  31. T. Thomson, P. C. Riedi, C. Morawe, and H. Zabel, “59Co NMR investigations of sputtered Co/Cu (100) and (111) multilayers,” J. Magn. Magn. Mater. 156, Nos. 1–3, 89–90 (1996).

    Article  CAS  Google Scholar 

  32. V. Scarani, B. Doudin, and J -P. Ansermet, “The microstructure of electrodeposited cobalt-based nanowires and its effect on their magnetic and transport properties,” Magn. Magn. Mater. 205, 241–248 (1999).

    Article  CAS  Google Scholar 

  33. J. Chojcan, “Interactions between impurity atoms of 3d transition metals dissolved in iron,” J. Alloys Compd. 205, Nos. 1–2, 50–53 (1998).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to P.Yu. Apel’ (Joint Institute of Nuclear Research, Dubna, Russia) for providing samples of track membranes and to I.M. Doludenko (Institute of Crystallography, Russian Academy of Sciences, Moscow, Russia) for obtaining the SEM image.

Funding

The NMR study results were obtained within the framework of State Assignment from the Ministry of Education and Science of Russia (topic Function, no. AAAA-A19-119012990095-0). The synthesis and microscopy of NWs were carried out within the framework of State Assignment for Federal Research Center Crystallography and Photonics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Chuprakov.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuprakov, S.A., Blinov, I.V., Zagorskii, D.L. et al. NMR Study of Cobalt-Containing Nanowires of Various Types. Phys. Metals Metallogr. 122, 869–875 (2021). https://doi.org/10.1134/S0031918X21090039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21090039

Keywords:

Navigation