Skip to main content
Log in

Micromechanical Characteristics of the Surface Layer of Metastable Austenitic Steel after Frictional Treatment

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The effect of the frictional treatment with a sliding indenter on the micromechanical properties of the austenitic corrosion-resistant chromium–nickel AISI 321 steel (16.80 wt % Cr, 8.44 wt % Ni) has been investigated. The instrumented microindentation results, which was performed on the surface of the steel and at different depths from the surface, has shown the exponential distribution of maximum hmax and permanent hp indentation depths, Martens hardness HM, indentation hardness at the maximum load HIT, elastic reverse deformation work of indentation We, total mechanical work of indentation Wt, elastic recovery Rе, ratio of indentation hardness to contact elastic modulus НIT/Е*, power ratio \({{H_{{{\text{IT}}}}^{3}} \mathord{\left/ {\vphantom {{H_{{{\text{IT}}}}^{3}} {{{E}^{{*2}}}}}} \right. \kern-0em} {{{E}^{{*2}}}}}\), and plasticity index δA over the depth of the hardened gradient layer. In this case, the HM, HIT, We, Rе, НIT/Е*, and \({{H_{{{\text{IT}}}}^{3}} \mathord{\left/ {\vphantom {{H_{{{\text{IT}}}}^{3}} {{{E}^{{*2}}}}}} \right. \kern-0em} {{{E}^{{*2}}}}}\) values are the highest, whereas the hmax, hp, Wt, and δA values are the lowest for the steel surface. The E* contact elastic modulus of AISI 321 steel also increases after the frictional treatment. It is distributed nonmonotonously over the depth of the hardened layer. This can be explained by the formation of different dislocation structures on the steel surface and in the underlying layers. The indentation results have shown that the frictional treatment increases the resistance to mechanical action of both the steel surface and the hardened layer with a depth of to 500 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1.
Fig. 2.
Fig. 3.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

REFERENCES

  1. A. V. Makarov, R. A. Savrai, N. A. Pozdejeva, S. V. Smirnov, D. I. Vichuzhanin, L. G. Korshunov, and I. Yu Malygina, “Effect of hardening friction treatment with hard-alloy indenter on microstructure, mechanical properties, and deformation and fracture features of constructional steel under static and cyclic tension,” Surf. Coat. Technol. 205 (3), 841–852 (2010). https://doi.org/10.1016/j.surfcoat.2010.08.025

    Article  CAS  Google Scholar 

  2. A. V. Makarov and L. G. Korshunov, “Metallophysical foundations of nanostructuring frictional treatment of steels,” Phys. Met. Metallogr. 120, 303–311 (2019).

    Article  CAS  Google Scholar 

  3. A. V. Makarov, N. A. Pozdejeva, R. A. Savrai, A. S. Yurovskikh, and I. Yu. Malygina, “Improvement of wear resistance of quenched structural steel by nanostructuring frictional treatment,” J. Frict. Wear 33, 433–442 (2012).

    Article  Google Scholar 

  4. R. A. Savrai, A. V. Makarov, I. Yu. Malygina, and E. G. Volkova, “Effect of nanostructuring frictional treatment on the properties of high-carbon pearlitic steel. Part I: microstructure and surface properties,” Mater. Sci. Eng., A 734, 506–512 (2018). https://doi.org/10.1016/j.msea.2018.07.099

    Article  CAS  Google Scholar 

  5. S. Q. Deng, A. Godfrey, W. Liu, and C. L. Zhang, “Microstructural evolution of pure copper subjected to friction sliding deformation at room temperature,” Mater. Sci. Eng., A 639, 448–455 (2015). https://doi.org/10.1016/j.msea.2015.05.017

    Article  CAS  Google Scholar 

  6. A. V. Makarov, L. G. Korshunov, R. A. Savrai, N. A. Davydova, I. Yu. Malygina, and N. L. Chernenko, “Influence of prolonged heating on thermal softening, chemical composition, and evolution of the nanocrystalline structure formed in quenched high-carbon steel upon friction treatment,” Phys. Met. Metallogr. 115, 303–314 (2014).

    Article  Google Scholar 

  7. A. V. Makarov, L. G. Korshunov, V. B. Vykhodets, T. E. Kurennykh, and R. A. Savrai, “Effect of strengthening friction treatment on the chemical composition, structure, and tribological properties of a high-carbon steel,” Phys. Met. Metallogr. 110, 507–521 (2010).

    Article  Google Scholar 

  8. A. V. Makarov, R. A. Savrai, P. A. Skorynina, and E. G. Volkova, “Development of methods for steel surface deformation nanostructuring,” Met. Sci. Heat Treat. 62, 61–69 (2020).

    Article  CAS  Google Scholar 

  9. R. A. Savrai and A. L. Osintseva, “Effect of hardened surface layer obtained by frictional treatment on the contact endurance of the AISI 321 stainless steel under contact gigacycle fatigue tests,” Mater. Sci. Eng., A 802, 140679 (2021).

    Article  CAS  Google Scholar 

  10. R. A. Savrai, A. V. Makarov, I. Yu. Malygina, S. A. Rogovaya, and A. L. Osintseva, “Improving the strength of the AISI 321 austenitic stainless steel by frictional treatment,” Diagn., Resour. Mech. Mater. Struct., No. 5, 43–62 (2017). http://dream-journal.org/issues/2017-5/2017-5_149.html.

  11. A. V. Makarov, P. A. Skorynina, A. L. Osintseva, A. S. Yurovskikh, and R. A. Savrai, “Improving the tribological properties of austenitic 12Kh18N10T steel by nanostructuring frictional treatment,” Obrab. Met. (Tekhnol., Oborud., Instrum.), No. 4 (69), 80–92 (2015).

  12. N. A. Narkevich, I. A. Shulepov, and Yu. P. Mironov, “Structure, mechanical, and tribotechnical properties of an austenitic nitrogen steel after frictional treatment,” Phys. Met. Metallogr. 118, 399–406 (2017).

    Article  CAS  Google Scholar 

  13. J. G. Li, M. Umemoto, Y. Todaka, and K. Tsuchiya, “Role of strain gradient on the formation of nanocrystalline structure produced by severe plastic deformation,” J. Alloys Compd. 434435, 290–293 (2007). https://doi.org/10.1016/j.jallcom.2006.08.167

    Article  CAS  Google Scholar 

  14. D. I. Vychuzhanin, A. V. Makarov, S. V. Smirnov, N. A. Pozdeeva, and I. Yu. Malygina, “Stress and strain and damage during frictional strengthening treatment of flat steel surface with a sliding cylindrical indenter,” J. Mach. Manuf. Reliab. 40, 554–560 (2011).

    Article  Google Scholar 

  15. V. P. Kuznetsov, A. V. Makarov, S. G. Psakhie, R. A. Savrai, I. Yu. Malygina, and N. A. Davydova, “Tribological aspects in nanostructuring burnishing of structural steels,” Phys. Mesomech. 17, 250–264 (2014).

    Article  Google Scholar 

  16. A. V. Makarov, P. A. Skorynina, A. S. Yurovskikh, and A. L. Osintseva, “Effect of the technological conditions of frictional treatment on the structure, phase composition and hardening of metastable austenitic steel,” AIP Conf. Proc. 1785, 040035 (2016). https://doi.org/10.1063/1.4967092

    Article  Google Scholar 

  17. R. A. Savrai and A. V. Makarov, “Effect of nanostructuring frictional treatment on the properties of high-carbon pearlitic steel. Part II: mechanical properties,” Mater. Sci. Eng., A 734, 513–518 (2018).

    Article  CAS  Google Scholar 

  18. A. V. Makarov, P. A. Skorynina, A. S. Yurovskikh, and A. L. Osintseva, “Effect of the conditions of the nanostructuring frictional treatment process on the structural and phase states and the strengthening of metastable austenitic steel,” Phys. Met. Metallogr. 118, 1225–1235 (2017).

    Article  CAS  Google Scholar 

  19. N. B. Pugacheva, T. M. Bykova, and E. B. Trushina, “Effect of the composition of the base steel on the structure and properties of diffusion boride coatings,” Uprochnyayushchie Tekhnol Pokrytiya, No. 4, 3–7 (2013).

    Google Scholar 

  20. N. B. Pugacheva, E. B. Trushina, and T. M. Bykova, “Research on the tribological properties of iron borides as diffusion coatings,” J. Frict. Wear 35, 489–496 (2014).

    Article  Google Scholar 

  21. R. A. Savrai, P. A. Skorynina, A. V. Makarov, and A. L. Osintseva, “Effect of liquid carburizing at lowered temperature on the micromechanical characteristics of metastable austenitic steel,” Phys. Met. Metallogr. 121, 1015–1020 (2020).

    Article  CAS  Google Scholar 

  22. GOST (State Standard) R 8.748-2011 (ISO 14577-1:2002): State System for Ensuring the Uniformity of Measurements. Metallic Materials. Instrumented Indentation Test for Hardness and Materials Parameters. Part 1: Test Method (Standartinform, Moscow, 2011) [in Russian].

  23. Y. T. Cheng and C. M. Cheng, “Relationships between hardness, elastic modulus and the work of indentation,” Appl. Phys. Lett. 73 (5), 614–618 (1998).

    Article  CAS  Google Scholar 

  24. T. F. Page and S. V. Hainsworth, “Using nanoindentation techniques for the characterization of coated systems: a critique,” Surf. Coat. Technol. 61 (1–3), 201–208 (1993).

    Article  CAS  Google Scholar 

  25. M. I. Petrzhik and E. A. Levashov, “Modern methods for investigating functional surfaces of advanced materials by mechanical contact testing,” Crystallogr. Rep. 52 (6), 966–974 (2007).

    Article  CAS  Google Scholar 

  26. P. H. Mayrhofer, C. Mitterer, and J. Musil, “Structure-property relationships in single- and dual-phase nanocrystalline hard coatings,” Surf. Coat. Technol. 174175, 725–731 (2003).

    Article  Google Scholar 

  27. Yu. V. Mil’man, S. I. Chugunova, and I. V. Goncharova, “Characteristic of plasticity determined by indentation,” Vopr. At. Nauki Tekh., No. 4, 182–187 (2011).

  28. R. A. Savrai, P. A. Skorynina, A. V. Makarov, and A. L. Osintseva, “Structure and surface properties of metastable austenitic steel subjected to liquid carburizing at a reduced temperature,” Phys. Met. Metallogr. 121, 65–71 (2020).

    Article  CAS  Google Scholar 

  29. M. V. Degtyarev, L. M. Voronova, and T. I. Chashchukhina, “Grain growth upon annealing of armco iron with various ultrafine-grained structures produced by high-pressure torsion deformation,” Phys. Met. Metallogr. 99, 276–285 (2005).

    Google Scholar 

  30. J. A. Benito, J. Jorba, J. M. Manero, and A. Roca, “Change of Young’s modulus of cold-deformed pure iron in a tensile test,” Metall. Mater. Trans. A 36 (12), 3317–3324 (2005).

    Article  Google Scholar 

  31. H. M. Ledbetter and S. A. Kim, “Low temperature elastic constants of deformed polycrystalline copper,” Mater. Sci. Eng., A 101, 87–92 (1988).

    CAS  Google Scholar 

  32. S. Shima and M. Yang, “A study of accuracy in an intelligent V-bending process for sheet metals: change in Young’s modulus due to plastic deformation and its effect on springback,” J. Soc. Mater. Sci. Jpn. 44 (500), 578–583 (1995).

    Article  CAS  Google Scholar 

  33. F. Morestin and M. Boivin, “On the necessity of taking into account the variation in the Young modulus with plastic strain in elastic-plastic software,” Nucl. Eng. Des. 162 (1), 107–116 (1996).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Electron scanning microscopy and instrumental microindentation tests were performed at the Center of the Collaborative Access “Plastometriya,” at the Institute of Engineering Science, Ural Branch, Russian Academy of Sciences. Transmission electron microscopy examination was carried out at the Center of the Collaborative Access “Test Center of Nanotechnologies and Advanced Materials,” Institute of Metal Physics, Ural Branch, Russian Academy of Sciences.

We thank A.L. Osintseva for her participation in experimental studies.

Funding

This work was performed within the state assignment of the Institute of Engineering Science, Ural Branch, Russian Academy of Sciences (theme AAAA-A18-118020790148-1) and Institute of Metal Physics, Ural Branch, Russian Academy of Sciences (theme AAAA-A18-118020190116-6) in part of the investigated materials and selection of the treatment conditions and supported in part by the Russian Foundation for Basic Research (project no. 20-58-00057 Bel_a) to investigate micromechanical properties of the modified surface layers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Savrai.

Additional information

Translated by T. Gapontseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savrai, R.A., Kolobylin, Y.M. & Volkova, E.G. Micromechanical Characteristics of the Surface Layer of Metastable Austenitic Steel after Frictional Treatment. Phys. Metals Metallogr. 122, 800–806 (2021). https://doi.org/10.1134/S0031918X21080123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21080123

Keywords:

Navigation