Skip to main content
Log in

Simulation of the Dynamics of Changing the Heat Resistance of Nickel Alloys by Machine Learning Methods

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Data on the nature of changing the heat resistance of nickel alloys, which are used for making the most critical parts, is of great topicality for the design of gas turbine engines of high resource. A model of changing the heat resistance and an analytical expression that makes it possible to determine the thermal stability parameter for each alloy composition are obtained using the machine learning method. The long-term strength limit was estimated and extrapolated using the Larson–Miller temperature–time dependence. The adequacy of the obtained model is confirmed by the satisfactory convergence of the experimental and calculated results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. D. S. Avramenko, “Prediction of the long-term strength of heat resistance of nickel alloys by the method of basic diagrams,” Detali Aerokosmicheskikh Letatel’nykh Apparatov, No. 8, 26–28 (2005).

    Google Scholar 

  2. M. M. Krivenyuk, “ Long-term strength prediction of high-temperature nickel alloys,” Metall i Lit’e Ukrainy, Nos. 11–12, 20–25 (2009).

    Google Scholar 

  3. M. Morinaga, N. Yukawa, H. Adachi, and H. Ezaki, “New phacomp and its application to alloy design,” In Superalloys (The Minerals, Metals & Materials Society, 1984), pp. 523–532.

    Google Scholar 

  4. V. A. Logunov, Yu. N. Shmotin, I. A. Leshchenko, and R. Yu. Starkov, “Modeling and development of new heat-resistant alloys,” Dvigatel’, No. 5, 24–27 (2013).

  5. E. N. Kablov and N. V. Petrushin, “Computer-aided design of cast heat-resistant nickel alloys,” Casting Heat-Resistant Alloys. The Effect of S.T. Kishkin (Nauka, Moscow, 2006), pp. 56–78.

    Google Scholar 

  6. E. N. Kablov, “Physicochemical and technological features of production of high-temperature rhenium-containing alloys,” Moscow Univ. Chem. Bull. 60, 16–28 (2005).

    Google Scholar 

  7. A. I. Samoilov, G. I. Morozova, and O. S. Afonicheva, “Analytical method for optimizing alloying of heat-resistant nickel alloys,” Materialoved., No. 2, 14 (2000).

  8. D. V. Danilov, A. V. Logunov, and Yu. N. Shmotin, “Methodological foundations of computer-aided design of heat-resistant nickel-based alloys Part I,” Tekhnol. Mater., No. 5, 3–10 (2014).

  9. D. V. Danilov, A. V. Logunov, and Yu. N. Shmotin, “Methodological foundations of computer-aided design of heat-resistant nickel-based alloys Part II,” Tekhnol. Mater., No. 6, 3–10 (2014).

  10. D. V. Danilov, A. V. Logunov, and Yu. N. Shmotin, “Methodological foundations of computer-aided design of heat-resistant nickel-based alloys Part III,” Tekhnol. Mater., No. 7, 3–11 (2014).

  11. K. Firsk and P. W. Gustafson, “An assessment of the Cr–Mo-system”, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 12, 247–254 (1988).

    Article  Google Scholar 

  12. S. H. Zhou, Y. Wang, L. Q. Chen, Z. K. Liu, and R. E. Napolitano, “Solution-based thermodynamic modeling of the Ni–Ta and NiMo–Ta systems using first-principle calculation,” CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 33, 631–641 (2009).

    Article  CAS  Google Scholar 

  13. L. Pauling, The Nature of the Chemical Bond (Cornell University, 1960.

    Google Scholar 

  14. S. T. Kishkin and E. N. Kablov, Casting Heat-Resistant Alloys for Turbine Blades. Aviation Materials. Fav. Tr. Viam (Anniversary Collection) (MISiS, VIAM, 2002), pp. 48–58 [in Russian].

  15. S. Walston, A. Cetel, Kay, R. Mac, K. O’Hara. et al., “Joint development of a fourth generation single crystal superalloy,” in Supralloy (Minerals, Metals & Materials Society, 2004), pp. 15–24.

    Google Scholar 

  16. E. N. Kablov, V. N. Toloraya, and N. G. Orehov, “Single-crystal rhenium-bearing nickel alloys for turbine blades of GTE,” Metal Science and Heat Treatment. 44, 274–278 (2002). https://doi.org/10.1023/A:1021247602507

  17. S. V. Gaiduk, “Design foundry high-temperature corrosion resistant nickel alloy for the manufacture of turbine blades by the method of directed (mono) crystallization,” Structural and functional materials. New materials and technologies in metallurgy and mechanical engineering, No. 1 (2016) [in Russian].

  18. E. B. Argimbaeva, O. A. Bazyleva, and E. I. Turenko, “Intermetallic alloys based on Ni3Al,” All Materials. Encyclopedic Reference Book (2012), No. 5 [in Russian].

  19. E. N. Kablov, Casting Blades of Gas Turbine Engines. Alloys, Technology, Coatings (MISIS, Moscow, 2001) [in Russian].

    Google Scholar 

  20. E. V. Baburina, Yu. M. Dolzhanskii, B. S. Lomberg, V. N. Chutkina, and V. V. Zorkina, “Structural stability of high-temperature nickel alloys and its improvement by optimal alloying,” Aviatsionnaya Prom-st., No. 5, 62–63 (1987).

  21. R. R. Larson and J. Miller, “Time-temperature relationship for rupture creep stress,” Trans ASME 74, No. 5, 765–775 (1952).

    Google Scholar 

  22. B. N. Sinayski, M. S. Belyaev, N. D. Zhukov, and A. D. Panteleev, “Temperature-time approach to approximation and extrapolation of characteristics of resistance of high-cycle nickel alloys to high-cycle fatigue”, Problemy Prochnosti, No. 3, 44–50 (1989) [in Russian].

    Google Scholar 

  23. S. O. Haykin, Neural Networks and Learning Machines, 3rd ed. (McMaster University, Ontario, 2009).

    Google Scholar 

  24. Y. S. Yoo, I. S. Kim, D. H. Kim, C. Y. Jo, H. M. Kim, and C. N. Jone, “The application of neural network to the development of single crystal superalloys,” Superalloys, Ed. by K. A. Green, T. M. Pollock, H. Harada, T. E. Howson, R. C. Reed, J. J. Schirra, and S. Walston (The Minerals, Metals & Materials Society, 2004).

    Google Scholar 

  25. M. H. Hasan, M. Al Hazza, M. W. Algrafi, and Z. Imam Syed, “ANN modeling of nickel base super alloys for time dependent deformation,” J. Autom. Control Eng. 2, No. 4, 353–356 (2014). https://doi.org/10.12720/joace.2.4.353-356

  26. O. S. Nurgayanova and A. A. Ganeev, “Mathematical modeling of the effect of alloying elements on the heat resistance of nickel alloys with a single crystal structure,” Vestnik UGATU 8 (4), 91–95 (2006).

    Google Scholar 

  27. O. S. Nurgayanova and A. A. Ganeev, “Computer-aided design of cast nickel superalloys with a single-crystal structure,” Polzunovskii Al’manakh, No. 3, 22–26 (2006).

    Google Scholar 

  28. O. S. Nurgayanova and A. A. Ganeev, “Neural network approaches to the design of new heat-resistant nickel casting alloys,” Neirokomp’yutery. Razrabotka, Primenenie, No. 10, 70–74 (2007).

  29. O. S. Nurgayanova and A. A. Ganeev, “Synthesis of cast nickel superalloys for castings with directional and single-crystal structure,” Vestnik UGATU 9 (1), 160–169 (2007).

    Google Scholar 

  30. S. Khaikin, Neural Networks: A Comprehensive Foundation (Vil’yams, Moscow, 2017).

    Google Scholar 

  31. N. Bano, A. Fahim, and M. Nganbe, “Modeling of thermal expansion coefficients of Ni based superalloys using artificial neural networks,” J. Mater. Eng. Perform. 22, 952–957 (2013).

    Article  CAS  Google Scholar 

  32. N. Bano, A. Fahim, and M. Nganbe, “Neural network approach for modeling the hysteresis energy of Ni based superalloys,” Proceedings of the International Conference on Mechanical Engineering and Mechatronics (Ottawa, 2012).

  33. N. Bano, A. Fahim, and M. Nganbe, “Neural network model to predict low cycle fatigue failure energy of rene77,” Proceedings of the AES-ATEMA’2010 Fifth International Conference (Montreal, 2010), pp. 123–126.

  34. N. Bano, A. Fahim, and M. Nganbe, “Fatigue crack initiation life prediction of IN738LC using artificial neural network,” Proceedings of the AES-ATEMA’2010 Fifth International Conferenc (Montreal, 2010), pp. 117–121.

  35. N. Bano, A. Fahim, and M. Nganbe, “Determination of thermal expansion coefficient of IN738LC with duplex size gamma prime using neural network,” Proceedings of the Conference of Metallurgists (Winnipeg, 2008).

  36. S. Feng, H. Zhou, and H. Dong, “Using deep neural network with small dataset to predict material defects,” Mater. Des. 162, 300–310 (2019). https://doi.org/10.1016/j.matdes.2018.11.060

    Article  Google Scholar 

  37. S. Feng, H. Zhou, and H. Dong, “Using deep neural regularization of neural networks,” Artificial Neural Networks. Methods in Molecular Biology™, Ed. by D. J. Livingstone (HumanaPress, 2019).

    Google Scholar 

  38. B. N. Sinayski, M. S. Belyaev, and N. D. Zhukov, “Panteleev network with small dataset to predict material defects,” Mater. Des. 162, 300–310 (1989).

    Google Scholar 

  39. F. Burden and D. Winkler, “Bayesian regularization of neural networks,” Artificial Neural Networks. Methods in Molecular Biology™, Ed. by D. J. Livingstone (Humana Press, 2008).

    Google Scholar 

  40. O. S. Nurgayanova, “Application of artificial neural networks in the problems of classification of multicomponent alloys,” Information technology for intelligent decision support. (ITIDS'2018), Proc. VI All-Russian Conference (Ufa, 2018), pp. 21–26.

  41. O. S. Nurgayanova and A. A. Ganeev, “Computer-aided design system for casting nickel heat-resistant alloys with a single crystal structure,” Polzunovskii Al’manakh, No. 3, 22–26 (2006).

    Google Scholar 

  42. E. N. Kablov, N. V. Petrushin, and E. S. Elyutin, “Single-crystal heatproof alloys for gas-turbine engines, Vestnik MGTU. Ser. Mashinostroenie, No. SP2, 38–52 (2011).

  43. X. R. Zhou, Y. S. Li, Z. L. Yan, C. W. Liu, and L. H. Zhu, “Kinetics of overlapping precipitation and particle size distribution of Ni3Al phase,” Phys. Met. Metallogr. 120, No. 4, 345–352 (2019).

    Article  CAS  Google Scholar 

  44. A. G. Tyagunov, E. E. Baryshev, T. K. Kostina, B. A. Baum, V. P. Lesnikov, and I. P. Semenova, “The effect of long-term high-temperature heat treatment at 950°C on the structure and mechanical properties of the ZhS6U superalloy,” Phys. Met. Metallogr. 86, No. 1, 65–69 (1998).

    Google Scholar 

  45. V. P. Kuznetsov, V. P. Lesnikov, and N. A. Popov, Structure and Properties of Heat Resistant Nickel Alloys (Ural University, 2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Tarasov.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyagunov, A.G., Tarasov, D.A. & Mil’der, O.B. Simulation of the Dynamics of Changing the Heat Resistance of Nickel Alloys by Machine Learning Methods. Phys. Metals Metallogr. 122, 704–709 (2021). https://doi.org/10.1134/S0031918X21070127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21070127

Keywords:

Navigation