Skip to main content
Log in

Specificities of the Magnetocaloric Effect near the Point of a Second-Order Phase Transition in a Ferromagnet with Biquadratic Exchange

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The magnetocaloric effect (change in the magnetic entropy upon isothermal magnetization, \({{\Delta }}{{S}_{M}}\left( H \right)\)) is investigated in the model of a ferromagnet with bilinear (\(I > 0\)) and biquadratic (\(K > 0\)) exchange interactions between nearest magnetic neighbors for the region of the ratios of the exchange parameters \(I\) and \(K\) in which the transition from the paramagnetic to the magnetically ordered state is a second-order phase transition. In the mean-field approximation, the thermodynamic potential of a magnetically ordered state is obtained, which is characterized by two order parameters: dipole (relative magnetization), \({{\sigma }_{Z}}\), and quadrupole, \({{q}_{0}},\) and the temperature and field behavior of the order parameters of this ferroquadrupole state near the Curie point \({{T}_{{\text{C}}}}\) are considered. It was found that the exponents of the power-law dependences of the change in the magnetic entropy on the magnetic field \(H\) coincide with exponents of the power-law dependence of the change in the entropy of an ordinary ferromagnet with only bilinear exchange; i.e., the change in entropy at the Curie point, \({{\Delta }}{{S}_{{\text{M}}}}\left( {{{T}_{{{\text{C}}}}},H} \right)\), is proportional to \( - {{H}^{{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-0em} 3}}}};\) slightly lower \({{T}_{{\text{C}}}}\), \({{\Delta }}{{S}_{{\text{M}}}}(T < {{T}_{{\text{C}}}},H)\sim - H\); and, above \({{T}_{{\text{C}}}}\), \({{\Delta }}{{S}_{{\text{M}}}}(T > {{T}_{{\text{C}}}},H)\sim - {{H}^{2}}.\) At the same time, the coefficients at these power factors in the entropy essentially depend on the ratios of the exchange parameters \(I\) and \(K\): they are minimal at \(K = 0\) and noticeably increase in absolute value with an increase in the ratio \({K \mathord{\left/ {\vphantom {K I}} \right. \kern-0em} I},\) reflecting an increase in the decrease in entropy with an increase in the contribution from the biquadratic exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and its Applications (Institute of Physics, Bristol and Philadelphia, 2003).

    Book  Google Scholar 

  2. K. A. Gschneider Jr., V. K. Pecharsky, and A. O. Tsokol, “Recent developments in magnetocaloric materials,” Rep. Prog. Phys. 68, 1479–1539 (2005).

    Article  Google Scholar 

  3. N. A. Oliveira and P. J. von Ranke, “Theoretical aspects of the magnetocaloric effect,” Phys. Rep. 489, 89–153 (2010).

    Article  Google Scholar 

  4. N. R. Ram, M. Prakash, U. Naresh, N. S. Kumar, T. S. Sarmash, T. Subbarao, R. J. Kumar, G. R. Kumar, K. C. B. Naidu, “Review on magnetocaloric effect and materials,” J. Supercond. Nov. Magn. 31, 1971–1979 (2018).

    Article  CAS  Google Scholar 

  5. C. P. Bean and D. S. Rodbell, “Magnetic disorder as a first-order phase transformation,” Phys. Rev. 126, 104–115 (1962).

    Article  CAS  Google Scholar 

  6. E. Z. Valiev, “Entropy and magnetocaloric effects in ferromagnets undergoing first- and second-order magnetic phase transitions,” J. Exp. Theor. Phys. 108, 279–285 (2009).

    Article  CAS  Google Scholar 

  7. E. Z. Valiev, “On Maxwell’s relation in ferromagnets and ferrimagnets,” Phys. Met. Metallogr. 121, 717–720 (2020).

    Article  CAS  Google Scholar 

  8. P. W. Anderson, “New approach to the theory of superexchange interactions,” Phys. Rev. 115, 2–11 (1959).

    Article  CAS  Google Scholar 

  9. N. L. Huang and R. Orbach, “Biquadratic superexchange,” Phys. Rev. Lett. 12, 275–277 (1964).

    Article  CAS  Google Scholar 

  10. U. Kobler, R. Mueller, L. Smardz, D. Maier, K. Fisher, B. Olefs, and W. Zinn, “Biquadratic exchange interaction in the Europium monochalcogenides,” Z. Phys. B 100, 497–506 (1996).

    Article  Google Scholar 

  11. P. Novak, I. Chaplygin, G. Seifert, S. Gemming, and R. Lasowski, “Ab-initio calculation of exchange interactions in YMnO3,” Comput. Mater. Sci. 44, 79–81 (2008).

    Article  CAS  Google Scholar 

  12. A. I. Wysocki, K. D. Beloshchenko, L. Ke, M. van Schilfgarde, and V. P. Antropov, “Biquadratic magnetic interaction in parent ferropnictides,” J. Phys.: Conf. Series. 449, O12024 (2013).

    Google Scholar 

  13. J. C. Slonzewski, “Origin of biquadratic exchange in magnetic multilayers (invited),” J. Appl. Phys. 73, 5957–5962 (1993).

    Article  Google Scholar 

  14. A. Kartsev, M. Augustin, R. F. L. Evans, K. S. Novoselov, and E. J. G. Santes, “Biquadratic exchange interactions in two-dimensional magnets,” NPY: Comp. Mater. 150 (2020).

  15. D. Spisak and J. Hafner, “Theory of bilinear and biquadratic exchange interactions in iron: bulk and surface,” J. Met., Mater. Miner. 168, 257–268 (1997).

    CAS  Google Scholar 

  16. H. A. Brown, “Heisenberg ferromagnet with biquadratic exchange,” Phys. Rev. B 4, 115–121 (1971).

    Article  Google Scholar 

  17. J. Sivardiere and M. Blume, “Dipolar and quadrupolar ordering in S = 3/2 Ising systems,” Phys. Rev. B 5, 1126–1134 (1972).

    Article  Google Scholar 

  18. M. Nauciel-Bloch, G. Sarma, and A. Castets, “Spin-one Heisenberg ferromagnet in the presence of biquadratic exchange,” Phys. Rev. B 5, 4603–4609 (1972).

    Article  Google Scholar 

  19. H. H. Chen and P. M. Levy, “Dipole and quadrupole phase transitions in spin-1 models,” Phys. Rev. B 7, 4267–4284 (1973).

    Article  CAS  Google Scholar 

  20. V. M. Matveev, “Quantum quadrupole magnetism and phase transitions in the presence of biquadratic exchange,” Zh. Eksp. Teor. Fiz. 65, 1626–1636 (1974).

    Google Scholar 

  21. V. M. Matveev, “Noncollinear structures, phase transitions and metamagnetism in biquadratic exchange,” Fiz. Tverd. Tela 16, 1635–1643 (1974).

    Google Scholar 

  22. V. G. Bar’yakhtar, V. V. Gann, and D. A. Yablonskii, “On the theory of magnetically ordered crystals with biquadratic exchange interaction,” Fiz. Tverd. Tela 17,1744–1748 (1975).

    Google Scholar 

  23. H. A. Brown, “Biquadratic exchange and first-order ferromagnetic phase transitions,” Phys. Rev. B 11, 4725–4727 (1975).

    Article  Google Scholar 

  24. K. G. Chakraborty, “Phase transitions in a Heisenberg ferromagnet in the presence of biquadratic exchange: isotropic case,” J. Phys. C: Solid State Phys. 9, 1499–1509 (1976).

    Article  Google Scholar 

  25. V. M. Matveev, “Rearrangement of quantum quadrupole ordering in a magnetic field,” Fiz. Tverd. Tela 25, 3655–3664 (1983).

    CAS  Google Scholar 

  26. V. V. Val’kov, G. N. Matsuleva, and S. G. Ovchinnikov, “Effect of a strong crystal field on the spectral properties of magnets with biquadratic exchange,” Fiz. Tverd. Tela 31, 60–67 (1989).

    Google Scholar 

  27. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review (Dover, New York, 1968) [in Russian].

Download references

Funding

This work was supported in part by the Russian Foundation for Basic Research, project no. 18-02-00281 A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. E. Kokorina or M. V. Medvedev.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokorina, E.E., Medvedev, M.V. Specificities of the Magnetocaloric Effect near the Point of a Second-Order Phase Transition in a Ferromagnet with Biquadratic Exchange. Phys. Metals Metallogr. 122, 629–636 (2021). https://doi.org/10.1134/S0031918X21070048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21070048

Keywords:

Navigation