Skip to main content
Log in

Mechanochemically Stimulated Reactions of the Reduction of Iron Oxide with Aluminum

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The products of the mechanochemical reduction of iron oxide with aluminum have been studied by means of X-ray diffraction analysis, infrared and Mössbauer spectroscopy. It is shown that the products of the mechanochemical reaction at a stoichiometric ratio of iron oxide and aluminum contain iron, α‑Al2O3, and a large amount of spinel (hercynite), which slightly decreases with an increase in the time of mechanical activation. According to the Mössbauer spectroscopy data, the reduction of iron oxide proceeds faster with a twofold increase in the aluminum content as compared to the stoichiometric one, and the excess aluminum reacts with the reduced iron, forming intermetallic FexAly phases mainly the monoaluminide FeAl strengthened by α-Al2O3 particles. Upon a threefold excess of the aluminum content over the stoichiometric one, the mechanochemical reduction slows down and the amount of FexAly intermetallic compounds with a higher aluminum content increases in the final products of reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. R. Miedema, P. F. de Chatel, and F. R. de Boer, “Cohesion in alloys–fundamentals, of a semi-empirical model,” Phys. B + C 100, 1–28 (1980).

    Article  CAS  Google Scholar 

  2. T. F. Grigor’eva, A. P. Barinova, and N. Z. Lyakhov, “Mechanochemical synthesis of intermetallic compounds,” Russ. Chem. Rev. 70, No. 1, 45–73 (2001).

    Article  Google Scholar 

  3. E. P. Elsukov, G. A. Dorofeev, G. N. Konygin, V. M. Fomin, and A. V. Zagainov, “Comparative analysis of the mechanisms and kinetics of mechanical alloying in the systems Fe(75)X(25); X = C, Si,” Phys. Met. Metallogr. 93, No. 3, 278–288 (2002).

    Google Scholar 

  4. E. P. Elsukov, G. A. Dorofeev, A. L. Ul’yanov, and A. V. Zagainov, “Structural and phase transformations upon mechanical alloying in the Fe(50)Ge(50) system,” Phys. Met. Metgallogr. 95, No. 5, 486–492 (2003).

    Google Scholar 

  5. E. P. Elsukov, A. L. Ul’yanov, V. E. Porsev, D. A. Kolodkin, A. V. Zagainov, and O. M. Nemtsova, “Peculiarities of mechanical alloying of high-concentration Fe–Cr alloys,” Phys. Met. Metallogr. 119, No. 2, 153–160 (2018).

    Article  CAS  Google Scholar 

  6. E. Yu. Ivanov, T. F. Grigor’eva, G. V. Golubkova, V. V. Boldyrev, A. B. Fasman, and S. D. Mikhailenko, “Mechanochemical synthesis of nickel aluminides,” Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. 6, 80–83 (1988).

    Google Scholar 

  7. T. F. Grigor’eva, G. V. Golubkova, and E. Yu. Ivanov, “Formation of supersaturated solid solutions during MA of crystalline nickel and aluminum,” Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. 5, 107–110 (1989).

    Google Scholar 

  8. T. F. Grigor’eva, A. P. Barinova, and V. V. Boldyrev, “Influence of the size factor and electron concentration on the degree of supersaturation of copper-based solid solutions obtained by mechanochemical synthesis,” Neorg. Mater. 32, No. 1, 41–43 (1996).

    Google Scholar 

  9. T. A. Sviridova, A. P. Shevchukov, E. V. Shelekhov, and P. A. Borisova, “Use of mechanical alloying and subsequent annealing for obtaining intermetallic compound CuAl2,” Phys. Met. Metallogr. 112, No. 4, 356–370 (2011).

    Article  Google Scholar 

  10. E. G. Volkova, A. Yu. Volkov, and B. D. Antonov, “Structure of Al2Au intermetallic compound obtained by mechanochemical synthesis,” Phys. Met. Metallogr. 119, No. 7, 650–659 (2018).

    Article  CAS  Google Scholar 

  11. V. M. Schastlivtsev and V. I. Zel’dovich, “Effect of extreme impacts on the structure and properties of alloys,” Phys. Met. Metallogr. 119, No. 9, 858–861 (2018).

    Article  CAS  Google Scholar 

  12. E. V. Voronina, A. K. Al’Saedi, A. G. Ivanova, A. K. Arzhnikov, and E. N. Dulov, “Structural and phase transformations occurring during preparation of ordered ternary Fe–Al–M alloys (M = Ga, B, V, Mn) by mechanical alloying,” Phys. Met. Metallogr. 120, No. 12, 1213–1220 (2019).

    Article  CAS  Google Scholar 

  13. N. S. Larionova, R. M. Nikonova, A. L. Ul’yanov, M. I. Mokrushina, and V. I. Lad’yanov, “Deformation-induced structural-phase transformations during mechanosynthesis of Fe-fullerite in toluene,” Phys. Met. Metallogr. 120, No. 9, 858–866 (2019).

    Article  CAS  Google Scholar 

  14. L. S. Vasil’ev and S. L. Lomaev, “Influence of pressure on the processes of formation and evolution of the nanostructure in plastically deformed metals and alloys,” Phys. Met. Metallogr. 120, No. 6, 600–606 (2019).

    Article  Google Scholar 

  15. G. B. Schaffer and P. G. McCormic, “Combustion synthesis by mechanical alloying,” Scr. Metall. 23, No. 6, 835–838 (1989).

    Article  CAS  Google Scholar 

  16. L. Takacs, “Reduction of magnetite by aluminum: a displacement reaction induced by mechanical alloying,” Mater. Lett. 13, 119–124 (1992).

    Article  CAS  Google Scholar 

  17. G. Concas, A. Corrias, E. Manca, G. Morongiu, G. Paschina, and G. Spano, “An X-ray diffraction and Mössbauer spectroscopy study of the reaction between hematite and aluminium activated by ball milling,” Z. Naturforsch, A 53, No. 5, 239–244 (1998).

    Article  CAS  Google Scholar 

  18. R. Checchetto, C. Tosello, A. Miotello, and G. Principi, “Structural evolution of Fe–Al multilayer thin films for different annealing temperatures,” J. Phys.: Condens. Matter 13, No. 5, 811–821 (2001).

    CAS  Google Scholar 

  19. F. Cardellini, V. Contini, R. Gupta, G. Mazzone, A. Montone, A. Perin, and G. Principi, “Microstructural evolution of Al–Fe powder mixtures during high-energy ball milling,” J. Mater. Sci. 33, No. 10, 2519–2527 (1998).

    Article  CAS  Google Scholar 

  20. T. Yu. Kiseleva, T. F. Grigor’eva, D. V. Gostev, V. B. Potapkin, A. N. Falkova, and A. A. Novakova, “Structural study of Fe–Al nanomaterial produced by mechanical activation and self-propagating high-temperature synthesis,” Moscow Univ. Phys. Bull. 63, No. 1, 55–60 (2008).

    Article  Google Scholar 

  21. R. M. Cornell and U. Schwertmann, Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses (Wiley, New York, 2006).

    Google Scholar 

  22. DIFFRAC plus : EVA. Bruker AXS GmbH (Karlsruhe, 2008).

  23. Powder Diffraction File PDF4+ ICDD (2015).

  24. J. Laugier and B. Bochu, LMGP-Suite of Programs for the interpretation of X-ray Experiments (Lab. Materiaux genie Phys., Grenoble, 2003).

  25. H. M. Rietveld, “A profile refinement method for nuclear and magnetic structures,“ J. Appl. Crystallogr. 2, 65–71 (1969).

  26. DIFFRAC plus : TOPAS. Bruker AXS GmbH (Karlsruhe, 2006).

  27. V. A. Podergin, Metallothermal Systems (Metallurgiya, Moscow, 1992) [in Russian].

    Google Scholar 

  28. P. Tarte, “Infra-red spectra of inorganic aluminates and characteristic vibrational frequencies of AlO4 tetrahedra and AlO6 octahedra,” Spectrochimi. Acta, Part A 23, No. 7, 2127–2143 (1967).

    CAS  Google Scholar 

  29. G. B. Andreozzi, G. Baldi, G. P. Berbardini, F. Di Benedetto, and M. Romanelli, “57Fe Mössbauer and electronic spectroscopy study on a new synthetic hercynite-based pigment,” J. Eur. Ceram. Soc. 24, No. 5, 821–824 (2004).

Download references

Funding

This study was supported by the Belarus Republic Foundation for Basic Research (project no. T20P-037) and the Russian Foundation for Basic Research (project no. 20-53-00037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. F. Grigoreva.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigoreva, T.F., Kiseleva, T.Y., Petrova, S.A. et al. Mechanochemically Stimulated Reactions of the Reduction of Iron Oxide with Aluminum. Phys. Metals Metallogr. 122, 572–578 (2021). https://doi.org/10.1134/S0031918X2106003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X2106003X

Keywords:

Navigation