Skip to main content
Log in

Magnetic Properties and High-Frequency Impedance of Nanocrystalline FeSiBNbCu Ribbons in a 300 to 723 K Temperature Range

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Magnetic properties and high-frequency impedance of nanocrystalline Fe73.5Si16.5B6Nb3Cu1 ribbons are studied in a high-temperature range of 300 to 723 K. The exchange-coupled state of nanocrystallites was found to be destructed at a temperature of about 530 K, which is substantially lower than the Curie temperature of the amorphous phase that is close to 635 K. It was found that, at an ac frequency of above 5 MHz, the marked magnetoimpedance effect (more than 50% for the magneoimpedance ratio in the case of complete impedance) is observed over the whole temperature range under study. This similar behavior can be essential in designing special-purpose magnetic field sensors intended for high-temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Y. Yoshizawa, S. Oguma, and K. Yamauchi, “New Fe based soft magnetic alloys composed of ultrafine grain structure,” J. Appl. Phys. 64, 6044–6046 (1988).

    Article  CAS  Google Scholar 

  2. G. Herzer, “Grain structure and magnetism of nanocrystalline ferromagnets,” IEEE Trans. Magn. 25, 3327–3329 (1989).

    Article  CAS  Google Scholar 

  3. A. A. Glazer, N. M. Klejnerman, V. A. Lukshina, A. P. Potapov, and V. V. Serikov, “Thermomechanical treatment of nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloy,” Fiz. Met. Metalloved., No. 12, 56–61 (1991).

  4. R. Alben, J. J. Becker, and M. C. Chi, “Random anisotropy in amorphous ferromagnets,” J. Appl. Phys. 49, 1653–1658 (1978).

    Article  CAS  Google Scholar 

  5. A. Hernando, M. Vázquez, T. Kulik, and C. Prados, “Analysis of the dependence of spin-spin correlations on the thermal treatment of nanocrystalline materials,” Phys. Rev. B 51, 3581–3586 (1995).

    Article  CAS  Google Scholar 

  6. R. S. Iskhakov, S. V. Komogortsev, Z. M. Moroz, and E. E. Shalygina, “Characteristics of the magnetic microstructure of amorphous and nanocrystalline ferromagnets with a random anisotropy: Theoretical estimates and experiment,” J. Exp. Theor. Phys. Lett. 72, 603–607 (2000).

    Article  CAS  Google Scholar 

  7. V. V. Serikov, N. M. Kleinerman, E. G. Volkova, V. A. Lukshina, A. P. Potapov, and A. V. Svalov, “Structure and magnetic properties of nanocrystalline FeCuNbSiB alloys after a thermomechanical treatment,” Phys. Met. Metallogr. 102, 268–273 (2006).

    Article  Google Scholar 

  8. E. A. Stepanova, S. O. Volchkov, V. A. Lukshina, D. M. Khudyakova, A. Larranaga, and D. S. Neznakhin, “Magnetic and magnetoimpedance properties of rapidly quenched ribbons of modified alloys based on FINEMET,” J. Phys.: Conf. Ser. 1389, 012123 (2019).

    CAS  Google Scholar 

  9. E. A. Mikhalitsyna, V. A. Kataev, A. Larrañaga, V. N. Lepalovskij, and G. V. Kurlyandskaya, “Nanocrystallization in FINEMET-type Fe73.5Nb3Cu1Si13.5B9 and Fe72.5Nb1.5Mo2Cu1.1Si14.2B8.7 thin films,” Materials (Basel) 13, 348 (2020).

    Article  CAS  Google Scholar 

  10. L. V. Panina and K. Mohri, “Magneto-impedance effect in amorphous wires,” Appl. Phys. Lett. 65, 1189–1191 (1994).

    Article  CAS  Google Scholar 

  11. A. S. Antonov, S. N. Gadetskii, A. B. Granovskii, A. L. D’yachkov, V. P. Paramonov, N. S. Perov, A. F. Prokoshin, N. A. Usov, and A. N. Lagar’kov, “Giant magnetoimpedance in amorphous and nanocrystalline multilayers,” Phys. Met. Metallogr. 83, 612–618 (1997).

    Google Scholar 

  12. G. V. Kurlyandskaya, D. de Cos, and S. O. Volchkov, “Magnetosensitive transducers for nondestructive testing operating on the basis of the giant magnetoimpedance effect: A review,” Russ. J. Nondestr. Test. 45, 377–398 (2009).

    Article  Google Scholar 

  13. M. Ohnuma, K. Hono, T. Yanai, M. Nakano, H. Fukunaga, and Y. Yoshizawa, “Origin of the magnetic anisotropy induced by stress annealing in Fe-based nanocrystalline alloy,” Appl. Phys. Lett. 86, 1–3 (2005).

    Article  Google Scholar 

  14. V. A. Lukshina, N. V. Dmitrieva, E. G. Volkova, and D. A. Shishkin, “Structure of the Fe63.5Ni10Cu1Nb3Si13.5B9 alloy nanocrystallized in the presence of tensile stresses,” Phys. Met. Metallogr. 120, 1145–1151 (2019).

    Article  CAS  Google Scholar 

  15. M. Vazquez, G. V. Kurlyandskaya, J. M. Garcia-Beneytez, J. P. Sinnecker, J. M. Barandiaran, V. A. Lukshina, and A. P. Potapov, “Frequency dependence of the magnetoimpedance in nanocrystalline FeCuNbSiB with high transverse stress-induced magnetic anisotropy,” IEEE Trans. Magn. 35, 3358–3360.

  16. A. V. Semirov, D. A. Bukreev, A. A. Moiseev, S. O. Volchkov, G. V. Kurlyandskaya, V. A. Lukshina, and E. G. Volkova, “Temperature dependences of magnetoimpedance of nanocrystalline Fe-based ribbons,” J. Nanosci. Nanotechnol. 12, 7446–7450 (2012).

    Article  CAS  Google Scholar 

  17. G. Chen, X. L. Yang, L. Zeng, J. X. Yang, F. F. Gong, D. P. Yang, and Z. C. Wang, “High-temperature giant magnetoimpedance in Fe-based nanocrystalline alloy,” J. Appl. Phys. 87, 5263–5265 (2000).

    Article  CAS  Google Scholar 

  18. M. Malátek, P. Ripka, and L. Kraus, “Temperature offset drift of GMI sensors,” Sens. Actuators, A 147, 415–418 (2008).

    Article  Google Scholar 

  19. J. Nabias, A. Asfour, and J.-P. Yonnet, “Temperature effect on GMI sensor: Comparison between diagonal and off-diagonal response,” Sens. Actuators, A 289, 50–56 (2019).

    Article  CAS  Google Scholar 

  20. A. V. Semirov, D. A. Bukreev, A. A. Moiseev, V. A. Lukshina, E. G. Volkova, and S. O. Volchkov, “Influence of the special features of the effective magnetic anisotropy on the temperature dependences of the magnetoimpedance of nanocrystalline Fe73.5Si16.5B6Nb3Cu1 strips,” Russ. Phys. J. 54, 612–618 (2019).

    Article  Google Scholar 

  21. L. Zeng, Z. J. Zhao, X. L. Yang, J. Z. Ruan, and G. Chen, “Observations of magnetic coupling in Fe-based nanocrystalline alloy by high-temperature giant magneto-impedance effect,” J. Magn. Magn. Mater. 246, 422–424 (2002).

    Article  CAS  Google Scholar 

  22. A. Ślawska-Waniewska, M. Gutowski, H. K. Lachowicz, T. Kulik, and H. Matyja, “Superparamagnetism in a nanocrystalline Fe-based metallic glass,” Phys. Rev. B 46, 14594–14597 (1992).

    Article  Google Scholar 

  23. Y. -C. Xu and Z. Wang, “Mechanism of improved high-temperature magnetic softness for Co-contained finemet alloy,” IEEE Trans. Magn. 51, 1–4 (2015).

    Google Scholar 

  24. A. V. Semirov, A. A. Moiseev, D. A. Bukreev, V. O. Kudryavtsev, A. A. Gavrilyuk, G. V. Zakharov, and M. S. Derevyanko, “Automated measuring complex for magnetoimpedance spectroscopy of magnetically soft materials,” Nauchnoe Pribostroenie 20, No. 2, 42–45 (2010).

    Google Scholar 

  25. R. S. Turtelli, V. H. Duong, R. Grossinger, M. Schwetz, E. Ferrara, and N. Pillmayr, “Contribution of the crystalline phase Fe100 – xSix to the temperature dependence of magnetic properties of FINEMET-type alloys,” IEEE Trans. Magn. 36, 508–512 (2000).

    Article  CAS  Google Scholar 

  26. G. Herzer, “Nanocrystalline soft magnetic alloys,” Handb. Magn. Mater. 415–462 (1997), Ch. 3.

  27. L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media (Pergamon, New York, 1960).

    Google Scholar 

  28. L. Kraus, “Theory of giant magneto-impedance in the planar conductor with uniaxial magnetic anisotropy,” J. Magn. Magn. Mater. 195, 764–778 (1999).

    Article  CAS  Google Scholar 

  29. A. V. Semirov, D. A. Bukreev, A. A. Moiseev, V. A. Lukshina, E. G. Volkova, S. O. Volchkov, and G. V. Kurlyandskaya, “Temperature dependence of the magnetic properties and magnetoimpedance of nanocrystalline Fe73.5Si16.5B6Nb3Cu1 ribbons,” Tech. Phys. 56, 395–399 (2011).

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported in part by a grant supporting the research and educational teams of IrNRTU, project no. 02-FPK-19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Bukreev.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukreev, D.A., Derevyanko, M.S., Moiseev, A.A. et al. Magnetic Properties and High-Frequency Impedance of Nanocrystalline FeSiBNbCu Ribbons in a 300 to 723 K Temperature Range. Phys. Metals Metallogr. 121, 949–954 (2020). https://doi.org/10.1134/S0031918X20100026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20100026

Keywords:

Navigation