Skip to main content
Log in

Influence of TMCP Parameters on Structure and Properties of Low Carbon Cu Bearing Ultra-High Strength Steel

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Ultrahigh level of strength, toughness, good weldability, and also weight reduction are the key issues in the automotive and structural industries for improving fuel efficiency and the economy of structure fabrication. The present investigation has produced an ultrahigh strength low carbon Cu bearing steel through the thermo-mechanically controlled processing (TMCP). Here Cu not only acts as a precipitation former but also delays the recrystallisation through a solute drag effect. The steel shows Cu-rich precipitates within the bainite-martensite microstructure. Cu-rich particles within the lower bainite, precipitation strengthening, solid solution strengthening, and delayed recrystallisation significantly improve the yield strength (≈1.25 GPa) and the strain hardening ability. The present steel has shown an excellent combination of mechanical properties comprising of ultra-high ultimate tensile strength >1550 MPa with ductility >12% and satisfactory low-temperature toughness (28 J/cm2). The investigated steel with low carbon content is expected to have good weldability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. A. Kozvonin, A. A. Shatsov, I. V. Ryaposov, M. G. Zakirova, and K. N. Generalova, “Structure, phase transformations, mechanical characteristics, and cold resistance of low-carbon martensitic steels”, Phys. Met. Metallogr. 117, 834–842 (2016).

    Article  CAS  Google Scholar 

  2. S. K. Ghosh, P. S. Bandyopadhyay, S. Kundu, and S. Chatterjee, “Copper bearing microalloyed ultrahigh strength steel on a pilot scale: Microstructure and properties”, Mater. Sci. Eng., A 528, 7887–7894 (2011).

    Article  CAS  Google Scholar 

  3. M. Zhao, K. Yang, and Y. Shan, “The effects of thermo-mechanical control process on microstructures and mechanical properties of a commercial pipeline steel”, Mater. Sci. Eng., A 335, 14–20 (2002).

    Article  Google Scholar 

  4. B. E. Keehan, L. Karlsson, H. O. Andren, and H. K. D. H. Bhadeshia, “New developments with C–Mn–Ni high strength steel weld metals. Part A. microstructure”, Weld. J. 85, 200–210 (2006).

    Google Scholar 

  5. Z. B. Jiao, J. H. Luan, M. K. Miller, and C. T. Liu, “Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles”, Acta Mater. 97, 58–67 (2015).

    Article  CAS  Google Scholar 

  6. S. Chatterjee and S. K. Ghosh, “Evolution of microstructures and mechanical properties of thermomechanically processed ultrahigh strength”, Int. J. Metall. Eng. 2, 92–99 (2013).

    Google Scholar 

  7. X. M. Wang and X. L. He, “Effect of boron addition on structure and properties of low carbon bainitic steels”, ISIJ Int. 42, 38–46 (2002).

    Article  Google Scholar 

  8. H. Song, J. Yoo, S-H. Kim, S. S. Sohn, M. Koo, N. J. Kim, and S. Lee, “Novel ultra-high-strength Cu-containing medium-Mn duplex lightweight steels”, Acta Mater. 135, 215–225 (2017).

    Article  CAS  Google Scholar 

  9. A. Karmakar, S. Biswas, S. Mukherjee, D. Chakrabarti, and V. Kumar, “Effect of composition and thermo-mechanical processing schedule on the microstructure, precipitation and strengthening of Nb-microalloyed steel”, Mater. Sci. Eng., A 690, 158–169 (2017).

    Article  CAS  Google Scholar 

  10. G. Mandal, S. K. Ghosh, D. Chakrabarti, and S. Chatterjee, “Effects of thermo-mechanical process parameters on microstructure and crystallographic texture of high Ni–Mo ultrahigh strength steel”, Metallogr., Microstruct., Anal. 7, 222–238 (2018).

    CAS  Google Scholar 

  11. C. Jun, T. Shuai, L. Zhen-Yu, and W. Guo-Dong, “Microstructural characteristics with various cooling paths and the mechanism of embrittlement and toughening in low-carbon high performance bridge steel”, Mater. Sci. Eng., A 559, 241–249 (2013).

    Article  Google Scholar 

  12. N. Tsuji, R. Ueji, Y. Minamino, and Y. Saito, “A new and simple process to obtain nano-structured bulk low-carbon steel with superior mechanical property”, Scr. Mater. 46, 305–310 (2002).

    Article  CAS  Google Scholar 

  13. Y. H. Zhao, X. Z. Liao, Z. Jin, R. Z. Valiev, and Y. T. Zhu, “Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing”, Acta Mater. 52, 4589–4599 (2004).

    Article  CAS  Google Scholar 

  14. A. Yu. Kaletin and Yu. V. Kaletina, “The role of retained austenite in the structure of carbide-free bainite of construction steels”, Phys. Met. Metallogr. 119, 893–898 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, G., Ghosh, S.K., Chakrabarti, D. et al. Influence of TMCP Parameters on Structure and Properties of Low Carbon Cu Bearing Ultra-High Strength Steel. Phys. Metals Metallogr. 121, 269–275 (2020). https://doi.org/10.1134/S0031918X2002012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X2002012X

Keywords:

Navigation