Skip to main content
Log in

Simulation of Primary Radiation Damage in Nickel

  • THEORY OF METALS
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The process of radiation damage formation in collision cascades initiated by primary knock-on atoms (PKAs) with energy EPKA = 5, 10, 15, and 20 keV in nickel at temperatures T = 100, 300, 600, 900, and 1200 K was studied using the molecular dynamics method. To ensure the statistical validity of the results, a series of 24 cascades was modeled for each pair of (EPKA, T) parameters. The simulation results were analyzed to determine the number NFP of Frenkel pairs, fractions of vacancies σvac and interstitial atoms σSIA in clusters of point defects, average sizes of vacancy 〈Nvac〉 and interstitial 〈NSIA〉 clusters, and average numbers of vacancy 〈Yvac〉 and interstitial 〈YSIA〉 clusters produced in collision cascades as functions of the PKA energy and simulation temperature. It was found that the relation 〈NFP〉 = 2 ± 0.9 × \(E_{\text{PKA}}^{{1.1 \pm 0.1}}\) holds true at all the examined values of (EPKA, T). The functional dependences of 〈σvac〉 and 〈σSIA〉 on EPKA were identical. The dependence of 〈σvac〉 follows that of 〈Yvac〉, while 〈σSIA〉 is governed by 〈NSIA〉 and the mobility of interstitials. The value of 〈Nvac〉 depends on the irradiation temperature and the thermal stability of vacancy clusters. These clusters are stable at T ≤ 300 K, and 〈Nvac〉 ∝ EPKA; at 600 ≤ T ≤ 900 K, 〈Nvac〉 ≈ 6 and 10, which corresponds to the sizes of regular stacking fault tetrahedra. The value of 〈YSIA〉 is proportional to 〈NFP〉 and, consequently, to EPKA in the entire range of PKA energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Handbook of Generation IV Nuclear Reactors 1st Edition, Ed. by I. Pioro, Woodhead Publishing Series in Energy: No. 103, (Woodhead, Duxford, 2016).

  2. B. Dominic, “Comparison of efficiency and power output of various power products,” presented at 1997International Gas Turbine Institute (IGTI) Turbo Expo.

  3. IAEA Advanced Reactors Information System (ARIS). https://aris.iaea.org/default.html.

  4. K. Nordlund, M. Ghaly, R. S. Averback, M. Caturla, T. Diaz de la Rubia, and J. Tarus, “Defect production in collision cascades in elemental semiconductors and fcc metals,” Phys. Rev. B 57, 7556–7570 (1998).

    Article  CAS  Google Scholar 

  5. E. Zarkadoula, G. Samolyuk, H. Xue, H. Bei, and W. J. Weber, “Effects of two-temperature model on cascade evolution in Ni and NiFe,” Scr. Mater. 124, 6–10 (2016).

    Article  CAS  Google Scholar 

  6. R. E. Voskoboinikov, “ Radiation defects in aluminum: MD simulations of collision cascades in the bulk of material,” Phys. Met. Metallogr. 120, 1–8 (2019). https://doi.org/10.1134/S0015323018110219

    Article  CAS  Google Scholar 

  7. R. E. Voskoboinikov, “Radiation defects in aluminum. Simulation of primary damage in surface collision cascades,” Phys. Met. Metallogr. 120, 9–15 (2019). https://doi.org/10.1134/S0015323019010066

    Article  CAS  Google Scholar 

  8. Y. Mishin, “Atomistic modeling of the γ and γ' phases of the Ni-Al system,” Acta Mater. 52, 1451–1467 (2004).

    Article  CAS  Google Scholar 

  9. J. P. Biersack and J. F. Ziegler, “Refined universal potentials in atomic collisions,” Nucl. Instrum. Methods 194, 93–100 (1982).

    Article  CAS  Google Scholar 

  10. C. Dimitrov, B. Sitaud, and O. Dimitrov, “Displacement threshold energies in Ni(Al) solid solutions and in Ni3Al,” J. Nucl. Mater. 208, 53–60 (1994).

    Article  CAS  Google Scholar 

  11. G. S. Was, Fundamentals of Radiation Materials Science—Metals and Alloys (Springer, Berlin, 2007).

    Google Scholar 

  12. K. Gärtner, D. Stock, B. Weber, G. Betz, M. Hautala, G. Hobler, M. Hou, S. Sarite, W. Eckstein, J. J. Jiménez-Rodríguez, A. M. C. Pérez-Martín, E. P. Andribet, V. Konoplev, A. Gras-Marti, M. Posselt, M. H. Shapiro, T. A. Tombrello, H. M. Urbassek, H. Hensel, Y. Yamamura, and W. Takeuchi, “Round robin computer simulation of ion transmission through crystalline layers,” Nucl. Instrum. Methods Phys. Res., Sect. B 102, 183–197 (1995).

    Google Scholar 

  13. L. D. Landau and E. M. Lifshits, Mechanics: Volume 1 (Course of Theoretical Physics S) 3rd Edition (Butterworth-Heinemann, Oxford, 1976).

  14. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).

    Google Scholar 

  15. L. A. Marques, J. E. Rubio, M. Jaraiz, L. Enriquez, and J. Barbolla, “An improved molecular dynamics scheme for ion bombardment simulations,” Nucl. Instrum. Methods Phys. Res., Sect. B 102, 7–11 (1995).

    CAS  Google Scholar 

  16. R. E. Voskoboinikov, “Radiation defects in aluminum: MD simulations of collision cascades in the bulk of material,” Phys. Met. Metallogr. 120, 1–8 (2019).

    Article  CAS  Google Scholar 

  17. R. E. Voskoboinikov, “Radiation defects in aluminum. Simulation of primary damage in surface collision cascades,” Phys. Met. Metallogr. 120, 9–15 (2019).

    Article  CAS  Google Scholar 

  18. R. E. Voskoboinikov, Yu. N. Osetsky, and D. J. Bacon, “Computer simulation of primary damage creation in displacement cascades in copper. I. Defect creation and cluster statistics,” J. Nucl. Mater. 377, 385–395 (2008).

    Article  CAS  Google Scholar 

  19. R. E. Voskoboinikov, Yu. N. Osetsky, and D. J. Bacon, “Statistics of primary damage creation in high-energy displacement cascades in copper and zirconium,” Nucl. Instrum. Methods Phys. Res., Sect. B 242, 68–70 (2006).

    CAS  Google Scholar 

  20. R. E. Voskoboinikov, Yu. N. Osetsky, and D. J. Bacon, “Atomic-scale simulation of defect cluster formation in high-energy displacement cascades in zirconium,” ASTM STP1475, 299–314 (2006).

    Google Scholar 

  21. R. Voskoboinikov, “A contribution of L10 ordered crystal structure to the high radiation tolerance of γ-TiAl intermetallics,” Nucl. Instrum. Methods Phys. Res., Sect. B 460, 92–97 (2019).

  22. R. Voskoboinikov, “An insight into radiation resistance of D019 Ti3Al intermetallics,” J. Nucl. Mater. 519, 239–246 (2019).

    Article  CAS  Google Scholar 

  23. R. Voskoboinikov, “MD simulations of primary damage formation in L12 Ni3Al intermetallics,” J. Nucl. Mater. 522, 123–135 (2019).

    Article  CAS  Google Scholar 

  24. R. E. Voskoboinikov, “MD simulations of collision cascades in the vicinity of a screw dislocation in aluminium,” Nucl. Instrum. Methods Phys. Res., Sect. B 303, 104–107 (2013).

    CAS  Google Scholar 

  25. R. E. Voskoboinikov, “Interaction of collision cascades with an isolated edge dislocation in aluminium,” Nucl. Instrum. Methods Phys. Res., Sect. B 303, 125–128 (2013).

    CAS  Google Scholar 

  26. F. A. Lindemann, “The calculation of molecular vibration frequencies,” Z. Phys. 11, 609–612 (1910).

    CAS  Google Scholar 

  27. K. Nordlund and R. S. Averback, “Point defect movement and annealing in collision cascades,” Phys. Rev. B 56, 2421–2431 (1997).

    Article  CAS  Google Scholar 

  28. C. D. Judge, “The Effects of Irradiation on Inconel X‑750,” PhD Thesis (McMaster University, 2015). http://hdl.handle.net/11375/18091

  29. H. K. Zhang, Z. Yao, G. Morin, and M. Griffiths, “TEM characterization of in-reactor neutron irradiated CANDU spacer material Inconel X-750,” J. Nucl. Mater. 451, 88–96 (2014).

    Article  CAS  Google Scholar 

  30. K. W. Ingle, R. C. Perrin, and H. R. Schober, “Interstitial cluster in FCC metals,” J. Phys. F: Met. Phys. 11, 1161–1173 (1981).

    Article  CAS  Google Scholar 

  31. V. A. Borodin and R. E. Voskoboinikov. To be published.

Download references

ACKNOWLEDGMENTS

MD simulations were carried out using high performance computing resources of the Federal Centre for Simulation and Data Processing for Mega-science Facilities at NRC Kurchatov Institute, http://ckp.nrcki.ru/.

Funding

This study was supported by the National Research Center “Kurchatov Institute,” project no. 1603. The software for MD simulations of radiation defects, the numerical integration methods, and defect identification and visualisation techniques were developed with the support from the Russian Foundation for Basic Research, project no. 17-03-01222a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Voskoboinikov.

Additional information

Translated by D. Safin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voskoboinikov, R.E. Simulation of Primary Radiation Damage in Nickel. Phys. Metals Metallogr. 121, 14–20 (2020). https://doi.org/10.1134/S0031918X20010196

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20010196

Keywords:

Navigation