Skip to main content
Log in

Spin Waves in YIG-Based Networks: Logic and Signal Processing

  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

An eight-port magnonic network was fabricated from 1 μm thick epitaxial yttrium iron garnet (YIG) film by the photolithography and ion-etching techniques. The network had a form of the 2 × 2 lattice of the 10 μm wide and 100 μm long YIG waveguides with inductive micro-antennas located at the ends and spaced by 90 μm. Effects of the spin waves (SW) propagation and interference in the network were studied experimentally and by micromagnetic simulation. It was shown that one can realize the constructive and destructive interference of the SW at the output transducers by changing the input signals phase. Possibilities to build logic gates and magnetic sensors based on the SW interference was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Chumak, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands, “Magnon spintronics,” Nature Phys. 11, 453-461 (2015).

    Article  CAS  Google Scholar 

  2. S. A. Nikitov, D. V. Kaliabin, I. V. Lisenkov, A. N. Slavin, Yu. N. Barabanenkov, S. A. Osokin, A. V. Sadovnikov, E. N. Beginin, M. A. Morozova, Yu. P. Sharaevskii, Y. A. Filimonov, Y. V. Khivintsev, S. L. Vysotskii, V. K. Sakharov, and E. S. Pavlov, “Magnonics: A new research area in spintronics and spin wave electronics,” Phys.–Usp. 58, 1002–1028 (2015).

    Article  CAS  Google Scholar 

  3. A. Khitun and A. Kozhanov, “Magnonic logic devices,” Izv. Saratov. Univ., Nov. ser., Ser. Fiz. 17, 216–241 (2017).

    Google Scholar 

  4. A. Papp, W. Porod, A. I. Csurgay, and G. Csaba, “Nanoscale spectrum analyzer based on spin-wave interference,” Sci. Rep. 7, 9245 (2017).

    Article  Google Scholar 

  5. A. Csaba and W. Papp, Porod, “Spin-wave based realization of optical computing primitives,” J. Appl. Phys. 115, 17C741 (2014).

    Article  Google Scholar 

  6. M. Balynsky, D. Gutierrez, H. Chiang, A. Kozhevnikov, G. Dudko, Y. Filimonov, A. A. Balandin, and A. Khitun, “A magnetometer based on a spin wave interferometer,” Sci. Rep. 7, 11539 (2017).

    Article  CAS  Google Scholar 

  7. M. P. Kostylev, A. A. Serga, T. Schneider, B. Leven, and B. Hillebrands, “Spin-wave logical gates,” Appl. Phys. Lett. 87, 153501 (2005).

    Article  Google Scholar 

  8. T. Schneider, A. A. Serga, B. Leven, and B. Hillebrands, “Realization of spin-wave logic gates,” Appl. Phys. Lett. 92, 022505 (2008).

    Article  Google Scholar 

  9. K. S. Lee and S. K. Kim, “Conceptual design of spin wave logic gates based on a Mach–Zehnder-type spin wave interferometer for universal logic functions,” J. Appl. Phys. 104, 053909 (2008).

    Article  Google Scholar 

  10. A. V. Chumak, A. A. Serga, and B. Hillebrands, “Magnon transistor for all-magnon data processing,” Nature Commun. 5, 4700 (2014).

    Article  CAS  Google Scholar 

  11. O. Rousseau, B. Rana, R. Anami, M. Yamada, K. Miura, S. Ogawa, and Y. Otani, “Realization of a micrometer-scale spin-wave interferometer,” Sci. Rep. 5, 9873 (2015).

    Article  CAS  Google Scholar 

  12. S. Klingler, P. Pirro, T. Brächer, B. Leven, B. Hillebrands, and A. V. Chumak, “Design of a spin-wave majority gate employing mode selection,” Appl. Phys. Lett. 105, 152410 (2014).

    Article  Google Scholar 

  13. S. Klingler, P. Pirro, T. Brächer, B. Leven, B. Hillebrands, and A. V. Chumak, “Spin-wave logic devices based on isotropic forward volume magnetostatic waves,” Appl. Phys. Lett. 106, 212406 (2015).

    Article  Google Scholar 

  14. T. Fischer, M. Kewenig, D. A. Bozhko, A. A. Serga., I. I. Syvorotka, F. Ciubotaru, C. Adelmann, B. Hillebrands, and A. V. Chumak, “Experimental prototype of a spin-wave majority gate,” Appl. Phys. Lett. 110, 152401 (2017).

    Article  Google Scholar 

  15. K. Nanayakkara, A. Anferov, A. P. Jacob, S. J. Allen, and A. Kozhanov, “Cross junction spin wave logic architecture,” IEEE Trans. Magn. 50, 3402204 (2014).

    Article  Google Scholar 

  16. M. Balynsky, A. Kozhevnikov, Y. Khivintsev, T. Bhowmick, D. Gutierrez, H. Chiang, G. Dudko, Y. Filimonov, G. Liu. G. Jiang, A. A. Balandin, R. Lake, and A. Khitun, “Magnonic interferometric switch for multi-valued logic circuits,” J. Appl. Phys. 121, 024504 (2017).

    Article  Google Scholar 

  17. M. Balynskiy, H. Chiang, D. Gutierrez, A. Kozhevnikov, Y. Filimonov, and A. Khitun, “Reversible magnetic logic gates based on spin wave interference,” J. Appl. Phys. 123, 144501 (2018).

    Article  Google Scholar 

  18. A. V. Kozhevnikov, Y. V. Khivintsev, V. K. Sakharov, G. M. Dudko, S. L. Vysotskii, Y. V. Nikulin, E. S. Pavlov, Y. A. Filimonov, and A. G. Khitun, “The effect of parametric processes on the propagation of spin waves in cross-shaped structures based on waveguides from yttrium iron garnet films,” Izv. Vyssh. Uchebn. Zaved., Appl. Nonlin. Dynam. 27 (3), 9 (2019).

  19. F. Gertz, A. Kozhevnikov, Y. Filimonov, and A. Khitun., “Magnonic holographic memory,” IEEE Trans. Magn. 51, 4002905 (2015).

    Article  Google Scholar 

  20. A. Kozhevnikov, F. Gertz, G. Dudko, Y. Filimonov, and A. Khitun, “Pattern recognition with magnonic holographic memory device,” Appl. Phys. Lett. 106, 142409 (2015).

    Article  Google Scholar 

  21. Y. V. Khivintsev, S. A. Nikitov, and Y. A. Filimonov, “Spin wave excitation in yttrium iron garnet films with micron-sized antennas,” Appl. Phys. Lett. 106, 052407 (2015).

    Article  Google Scholar 

  22. V. K. Sakharov, Y. V. Khivintsev, S. L. Vysotskii, A. I. Stognij, and Y. A. Filimonov, “Enhanced nonreciprocity of magnetostatic surface waves in yttrium–iron–garnet films deposited on silicon substrates by ion-beam evaporation,” IEEE Magn. Lett. 8, 3704105 (2017).

    Article  Google Scholar 

  23. M. J. Donahue and D. G. Porter, OOMMF User’s Guide, Version 1.0, NIST technical report, NISTIR 6376 (NIST, Gaithersburg, MD, 1999).

    Google Scholar 

  24. A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (CRC Press, New York, 1996).

    Google Scholar 

  25. M. Balinsky, D. Gutierrez, H. Chiang, Y. Filimonov, A. Kozhevnikov, and A. Khitun, “Spin wave interference in YIG cross junction,” AIP Advances 7, 056633 (2017).

    Article  Google Scholar 

  26. G. M. Dudko, A. V. Kozhevnikov, Y. V. Khivintsev, Y. A. Filimonov, A. G. Khitun, and S. A. Nikitov, “Micromagnetic simulation of propagation of spin waves in in-plane magnetized crosses based on ferrite microwaveguides of different width,” J. Commun. Technol. Electronics 63, 1212–1216 (2018).

    Article  CAS  Google Scholar 

  27. G. M. Dudko, Y. V. Khivintsev, V. K. Sakharov, A. V. Kozhevnikov, S. L. Vysotskii, M. E. Seleznev, Y. A. Filimonov, and A. G. Khitun, “Micromagnetic modeling of nonlinear interaction of lateral magnetostatic modes in cross-shaped structures based on waveguides from iron yttrium garnet films,” Izv. Vyssh. Uchebn. Zaved., Appl. Nonlin. Dynam. 27 (2), 39–60 (2019).

    Google Scholar 

  28. A. Aharoni, “Demagnetizing factors for rectangular ferromagnetic prisms,” J. Appl. Phys. 83, 3432–3434 (1998). https://doi.org/10.1063/1.367113

    Article  CAS  Google Scholar 

  29. T. W. O’Keeffe and R. W. Patterson, “Magnetostatic surface-wave propagation in finite samples,” J. Appl. Phys. 49, 4886–4895 (1978).

    Article  Google Scholar 

  30. Y. V. Khivintsev, V. K. Sakharov, S. L. Vysotskii, Y. A. Filimonov, A. I. Stognii, and S. A. Nikitov, “Magnetoelastic waves in submicron yttrium–iron garnet films manufactured by means of ion-beam sputtering onto gadolinium–gallium garnet substrates,” Tech. Phys. 63, 1029–1035 (2018).

    Article  CAS  Google Scholar 

  31. V. K. Sakharov, Y. V. Khivintsev, S. L. Vysotskii, A. I. Stognij, G. M. Dudko, and Y. A. Filimonov, “Influence of input signal power on magnetostatic surface waves propagation in yttrium–iron garnet films on silicon substrates,” Izv. Vyssh. Uchebn. Zaved., Appl. Nonlin. Dynam. 25 (1), 35–51 (2017).

    Google Scholar 

  32. N. Zhu, H. Chang, A. Franson, T. Liu, X. Zhang, E. Johnston-Halperin, M. Wu, H. X. Tang, “Patterned growth of crystalline Y5Fe5O12 nanostructures with engineered magnetic shape anisotropy,” Appl. Phys. Lett. 110, 252401 (2017).

    Article  Google Scholar 

Download references

Funding

Support by Russian Science Foundation grant 17-19-01673 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. A. Filimonov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khivintsev, Y.V., Kozhevnikov, A.V., Dudko, G.M. et al. Spin Waves in YIG-Based Networks: Logic and Signal Processing. Phys. Metals Metallogr. 120, 1318–1324 (2019). https://doi.org/10.1134/S0031918X1913012X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X1913012X

Keywords:

Navigation