Skip to main content
Log in

Structural and Phase Transformations Occurring during Preparation of Ordered Ternary Fe–Al–M Alloys (with M = Ga, B, V, and Mn) by Mechanical Alloying

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The possibility of synthesis of the ordered ternary Fe65Al35 – xМx and Fe65 – yAl35My alloys with x, y = 0, 3, 5, 10 at % and M = B, Ga, V, Mn is studied and conditions of the synthesis are reported. Nanocrystalline metastable disordered ternary alloys are used as the precursor materials for the ordered alloys, which are prepared by mechanical alloying from elemental components. The heat treatment of mechanically alloyed compositions allowed us to reach the single-phase state with the В2 superstructure for the compositions with Ga and V; the single-phase state with the D03 superstructure was reached for the compositions with B and Mn.

Keywords:

ordered ternary Fe–Al-based alloys, mechanical synthesis, structure, hyperfine interactions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. “Discussion meeting on the development of innovative iron aluminum alloy,” Intermetallics 13, 1255–1342 (2005).

  2. Mater. Sci. Eng., A 258, 1–336 (1998).

  3. D. J. Alexander, P. J. Maziasz, and J. L. Wright, “Processing and alloying effects on tensile and impact properties of FeAl alloys,” Mater. Sci. Eng., A 258, 276–284 (1998).

    Article  Google Scholar 

  4. A. Fraczkiewicz, A. Gay, and M. Biscondi, “On the boron effect in FeAl (B2) intermetallic alloys,” Mater. Sci. Eng., A 258, 108–114 (1998).

    Article  Google Scholar 

  5. J. W. Cohron, Y. Lin, R. H. Zee, and E. P. George, “Room-temperature mechanical behavior of FeAl: Effects of stoichiometry, environment, and boron addition,” Acta Mater. 46, 6245–6256 (1998).

    Article  CAS  Google Scholar 

  6. C. T. Liu, E. P. George, P. J. Maziasz, and J. H. Schneibel, “Recent advances in B2 iron aluminide alloys: deformation, fracture and alloy design,” Mater. Sci. Eng., A 258, 84–98 (1998).

    Article  Google Scholar 

  7. M. M. Rico, J. M. Greneche, and G. A. P. Alcázar, “Effect of boron on structural and magnetic properties of the Fe60Al40 system prepared by mechanical alloying,” J. Alloys Compd. 398, 26–32 (2005).

    Article  CAS  Google Scholar 

  8. C. Bormio-Nunes, M. B. Dias, and L. Ghivelder, “High magnetostriction of the polycrystalline alloy (Fe0.8Al0.2)97B3,” J. Alloys Compd. 574, 467–471 (2013).

    Article  CAS  Google Scholar 

  9. C. Bormio-Nunes and O. Hubert, “Piezomagnetic behavior of Fe–Al–B alloys,” J. Magn. Magn. Mater. 393, 404–418 (2015).

    Article  CAS  Google Scholar 

  10. J. B. Restorff, M. Wun-Fogle, A. E. Clark, T. A. Lograsso, A. R. Ross, and D. L. Schlagel, “Magnetostriction of ternary Fe–Ga–X alloys (X = Ni, Mo, Sn, Al),” J. Appl. Phys. 91, 8225–8227 (2002).

    Article  CAS  Google Scholar 

  11. Y. Nishino, “Electronic structure and transport properties of pseudogap system Fe2VAl,” Mater. Trans. 42, 902–910 (2001).

    Article  CAS  Google Scholar 

  12. D. R. Noakes, A. S. Arrott, M. G. Belk, S. C. Deevi, Q. Z. Huang, J. W. Lynn, R. D. Shull, and D. Wu, “Incommensurate spin density waves in iron aluminides,” Phys. Rev. Lett. 91, 217201 (2003).

    Article  CAS  Google Scholar 

  13. O. Kubaschewski, Iron—Binary Phase Diagrams (Springer, Berlin, 1982; Metallurgiya, Moscow, 1985) .

  14. G. Le Caër, P. Delcroix, M. O. Kientz, and B. Malaman, “The study of Fe-based mechanically alloyed materials by Mössbauer spectroscopy,” Mater. Sci. Forum 179–181, 469–474 (1995).

    Article  Google Scholar 

  15. J. H. Hsu and C. L. Chien, “Structural and Mössbauer studies of Fe1 – xAlx alloys over the entire composition range,” Hyperfine Interact. 69, 451–454 (1991).

    Article  CAS  Google Scholar 

  16. S. D. Kaloshkin, I. A. Tomilin, E. V. Shelekhov, V. V. Cherdyntsev, G. A. Andrianov, and Yu. V. Baldokhin, “Formation of supersaturated solid solutions in the Fe–Cu system during mechanical alloying,” Phys. Met. Metallogr. 84, 245–250 (1997).

    Google Scholar 

  17. G. A. Dorofeev, E. P. Elsukov, and A. L. Ul’yanov, “Mechanical alloying of immiscible elements in the Fe–Mg system,” Inorg. Mater. 40, 690–699 (2004).

    Article  CAS  Google Scholar 

  18. E. Popiel, M. Tuszyński, W. Zarek, and T. Rendecki, “Investigation of Fe3 – xVxAl alloys with DO3 type structure by X-ray, magnetostatic and Mössbauer effect methods,” J. Less-Common Met. 146, 127–135 (1989).

    Article  CAS  Google Scholar 

  19. E. Popiel, W. Zarek, Z. Kapuśniak, and M. Tuszyński, “Crystal order and magnetic properties of Fe2.4V0.6Al alloy studied by magnetostatic and Mössbauer methods,” Nukleonika 48, 65–70 (2003).

    Google Scholar 

  20. H. I. Gharsallah, A. Sekri, M. Azabou, L. Escoda, J. J. Sunol, and M. Khitouni, “Structural and thermal study of nanocrystalline Fe–Al–B alloy prepared by mechanical alloying,” Metall. Mater. Trans. A 46, 3696–3704 (2015).

    Article  CAS  Google Scholar 

  21. J. M. Raulot, A. Fraczkiewicz, T. Cordonnier, H. Aourag, T. Grosdidier, “Atomistic study of the effect of B addition in the FeAl compound,” J. Mater. Sci. 43, 3867–3872 (2008).

    Article  CAS  Google Scholar 

  22. G. A. P. Alcazar, E. G. Silva, and C. Paduani, “Magnetic properties of Fe–Mn–Al alloy system in the FCC disordered phase,” Hyperfine. Interact. 66, 221–229 (1991).

    Article  Google Scholar 

  23. G. A. P. Alcazar, J. A. Plascak, and E. G. da Silva, “Magnetic properties of Fe–Mn–Al alloys in the disordered phase,” Phys. Rev. B 38, 2816–2819 (1988).

    Article  Google Scholar 

  24. E. P. Yelsukov, A. L. Ulyanov and G. A. Dorofeev, “Comparative analysis of mechanisms and kinetics of mechanical alloying in Fe–Al and Fe–Si systems,” Acta Mater. 52, 4251–4257 (2004).

    Article  CAS  Google Scholar 

  25. G. A. Dorofeev, A. N. Streletskii, I. V. Povstugar, A. V. Protasov, and E. P. Elsukov, “Determination of nano-particle sizes by X-ray diffraction,” Colloid J. 74, 675–685 (2012).

    Article  CAS  Google Scholar 

  26. M. E. Matsnev and V. S. Rusakov, “SpectrRelax: An application for Mössbauer spectra modeling and fitting,” Mössbauer spectroscopy in Materials Science-2012: Proceedings of the International Conference MSMS-12, AIP Conf. Proc. 1489, 178–185 (2012).

  27. S. Gialanella, X. Amils, M. D. Barò, P. Delcroix, G. Le Caër, L. Lutterotti, and S. Suriñach, Microstructural and kinetic aspects of the transformations induced in a FeAl alloy by ball-milling and thermal treatments,” Acta Mater. 46, 3305–3316 (1998).

    Article  CAS  Google Scholar 

  28. E. P. Yelsukov, E. V. Voronina, and V. A. Barinov, “Mössbauer study of magnetic properties formation in disordered Fe–Al alloys,” J. Magn. Magn. Mater. 115, 271–280 (1992).

    Article  Google Scholar 

  29. G. P. Huffman and R. M. Fisher, “Mössbauer studies of ordered and cold-worked Fe–Al alloys containing 30 to 50 at % aluminum,” J. Appl. Phys. 38, 735–742 (1967).

    Article  CAS  Google Scholar 

  30. M. Shiga, T. Kikawa, K. Sumiyama, and Y. Nakamura, “Magnetic properties of metastable Fe–Al alloys produced by vapor quenching,” Nippon Oyo Jiki Gakkaishi 9, 187–190 (1985).

    CAS  Google Scholar 

  31. E. V. Voronina, A. K. Arzhnikov, A. I. Chumakov, N. I. Chistyakova, A. G. Ivanova, A. V. Pyataev, and A. V. Korolev, “Magnetic phase separation and magnetic moment alignment in ordered alloys Fe65Al35 – xMx (Mx = Ga, B; x = 0; 5 at %),” Adv. Cond. Matt. Phys. 2018, 1–8 (2018).

    Google Scholar 

  32. Y. Nishino, M. Kato, S. Asano, K. Soda, M. Hayasaki, and U. Mizutani, “Semiconductorlike behavior of electrical resistivity in Heusler-type Fe2VAl compound,” Phys. Rev. Lett. 79, 1909–1912 (1997).

    Article  CAS  Google Scholar 

  33. B. Drittler, N. Stefanou, S. Blugel, R. Zeller, and P. H. Dederichs, “Electronic structure and magnetic properties of dilute Fe alloys with transition-metal impurities,” Phys. Rev. B 40, 8203–8212.

  34. J. C. Krause, C. Paduani, J. Schaff, and M. I. Kosta, Jr., “Electronic structure of disordered Fe–V alloys,” Phys. Rev. B 57, 857–861 (1998).

    Article  CAS  Google Scholar 

  35. D. J. Chakrabarti, “Phase stability in ternary systems of transition elements with aluminum,” Metall. Trans. B 8, 121–123 (1977).

    Article  Google Scholar 

  36. E. P. Yelsukov, G. A. Dorofeev, and V. A. Barinov, “Mössbauer study of solid state reactions under mechanical grinding of the Fe2B and FeB borides,” Czech. J. Phys. 47, 499–506 (1997).

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by a grant assigned to the Kazan Federal University in terms of state task (3.7352.2017/8.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Voronina.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronina, E.V., Al’Saedi, A.K., Ivanova, A.G. et al. Structural and Phase Transformations Occurring during Preparation of Ordered Ternary Fe–Al–M Alloys (with M = Ga, B, V, and Mn) by Mechanical Alloying. Phys. Metals Metallogr. 120, 1213–1220 (2019). https://doi.org/10.1134/S0031918X19120172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X19120172

Navigation