Skip to main content

Formation of the Structure and Properties upon Thermohydrogen Treatment of the Alloy Based on Titanium Aluminide Ti2AlNb

Abstract—Changes in the structure, phase composition, microhardness, and modulus of elasticity upon thermohydrogen treatment of the VTI4 alloy based on the orthorhombic titanium aluminide Ti2AlNb alloyed with hydrogen to 12.5 at % have been studied using electron microscopy, X-ray diffraction analysis, and microindentation. It has been shown that the alloying of this alloy with hydrogen leads to a decrease in peak stresses and to an increase in the degree of deformation to the formation of cracks in the course of upsetting at 900°C. The kinetics of dehydrogenation at the temperatures of 600 and 700°C for 4 h in an argon flow and in vacuum has been studied. The thermohydrogen treatment of the VTI4 alloy makes it possible to obtain a thermostable state with a safe hydrogen content with a predominance of the O phase in the structure and high physical and mechanical properties (the Vickers hardness up to 5300 MPa, the contact modulus of elasticity to 114 GPa) after the final dehydrogenating annealing in the vacuum at 600°C for 4 h.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. 1

    O. S. Kashapov, A. V. Novak, N. A. Nochovnaya, and T. V. Pavlova, “State-of-the-art, problems, and prospects of creating heat-resistant titanium alloys for GTE parts”, Trudy VIAM (Electronic journal), No. 3 (2013).

  2. 2

    S. V. Skvortsova, A. A. Il’in, A. M. Mamonov, N. A. Nochovnaya, and O. Z. Umarova, “Structure and properties of semifinished sheet products made of an intermetallic refractory alloy based on Ti2AlNb”, Mater. Sci. 51, 821–826 (2016).

    CAS  Article  Google Scholar 

  3. 3

    N. A. Nochovnaya, E. B. Alekseev, A. Yu. Izotova, and A. V. Novak, “Fireproof titanium alloys and features of their use”, Titan, No. 4, 42–46 (2012).

    Google Scholar 

  4. 4

    A. S. Yurovskikh, S. L. Demakov, and E. V. Kolosova, “Features of the structure and phase composition of the Ti–23Al–26Nb/Al laminated material obtained by the method of plasma-spark sintering”, Metalloved. Term. Obrab/ Met/, No. 9, 35–40 (2012).

  5. 5

    L. T. Zhang, K. Itu, V. K. Vasudevan, and M. Yamaguchi, “Hydrogen absorption and desorption in a B2 single-phase Ti–22Al–27Nb alloy before and after deformation”, Acta Mater. 49, 751–758 (2001).

    CAS  Article  Google Scholar 

  6. 6

    A. M. Patselov, V. V. Rybin, B. A. Greenberg, and N. V. Mushnikov, “Hydrogen absorption in as-cast bcc single-phase Ti–Al–Nb alloys”, J. Alloys Compd. 505, 183–187 (2010).

    CAS  Article  Google Scholar 

  7. 7

    S. Wang, W. Xu, Y. Zong, X. Zhong, and D. Shan, “Effect of initial microstructure on hot deformation behavior and workability of Ti2AlNb-based alloy”, Metals 8, 382 (2018).

    CAS  Article  Google Scholar 

  8. 8

    X. Jiao, B. Kong, W. Tao, G. Liu, and H. Ning, “Effects of annealing on microstructure and deformation uniformity of Ti–22Al–24Nb–0.5Mo laser welded joints”, Mater. Des. 130, 166–174 (2017).

    CAS  Article  Google Scholar 

  9. 9

    M. Li, Q. Cai, Y. Liu, Z. Ma, Z. Wang, Y. Huang, and H. Li, “Formation of fine B2/β + O structure and enhancement of hardness in the aged Ti2AlNb-based alloys prepared by spark plasma sintering”, Metall. Mater. Trans. A 48, 4365–4371 (2017).

    CAS  Article  Google Scholar 

  10. 10

    J. L. Yang, G. F. Wang, W. C. Zhang, W. Z. Chen, X. Y. Jiao, and K. F. Zhang, “Microstructure evolution and mechanical properties of P/M Ti–22Al–25Nb alloy during hot extrusion”, Mater. Sci. Eng., A 699, 210–216 (2017).

    CAS  Article  Google Scholar 

  11. 11

    A. A. Popov, A. G. Illarionov, S. L. Demakov, and O. A. Elkina, “Study of phase transformations in the titanium–niobium–hydrogen system”, Int. J. Hydrogen Energy 22, 195–200 (1997).

    CAS  Article  Google Scholar 

  12. 12

    A. A. Il’in, B. A. Kolachev, V. K. Nosov, and A. M. Mamonov, Hydrogen Technology of Titanium Alloys (MISiS, Moscow, 2002).

  13. 13

    F. H. Froes and O. N. Senkov, J. I. Qazi, “Hydrogen as a temporary alloying element in titanium alloys: Thermohydrogen processing”, Int. Mater. Rev. 49, 227–245 (2013).

    Article  Google Scholar 

  14. 14

    A. G. Illarionov, S. V. Grib, A. A. Popov, S. L. Demakov, M. S. Karabanalov, O. G. Khadzhieva, and O. A. Elkina, “Effect of hydrogen on the formation of the structure and phase composition in the Ti2AlNb-based alloy”, Phys. Met. Metallogr. 109, 142–152 (2010).

    Article  Google Scholar 

  15. 15

    S. V. Skvortsova, O. N. Gvozdeva, V. A. Pozhoga, S. S. Slezov, and T. G. Yagudin, “Hydrogen technology as an effective technological method of controlling the structure and mechanical and technological properties of alloys based on titanium and titanium aluminide”, Titan, No. 4 (54), 49–53 (2016).

    Google Scholar 

  16. 16

    U. Zwicker and H. Scheicher, U.S. Patent No. 2892742 (1959).

  17. 17

    B. A. Kolachev and V. K. Nosov, Hydrogen Plasticization during Hot Deformation of Titanium Alloys (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  18. 18

    A. Ovchinnikov, S. Skvortsova, A. Mamonov, and E. Yermakov, “Influence of hydrogen on plastic flow of the titanium and its alloys”, Acta Metall. Slovaca 23, 122–134 (2017).

    Article  Google Scholar 

  19. 19

    A. A. Popov, A. G. Illarionov, S. V. Grib, S. L. Demakov, M. S. Karabanalov, and O. A. Elkina, “Phase and structural transformations in the alloy on the basis of the orthorhombic titanium aluminide”, Phys. Met. Metallogr. 106, 399–410 (2008).

    Article  Google Scholar 

  20. 20

    O. G. Khadzhieva, A. G. Illarionov, and A. A. Popov, “Effect of aging on structure and properties of quenched alloy based on orthorhombic titanium aluminide Ti2AlNb”, Phys. Met. Metallogr. 115, 12–20 (2014).

    Article  Google Scholar 

  21. 21

    O. G. Khadzhieva, A. G. Illarionov, A. A. Popov, and S. V. Grib, “Effect of hydrogen on the structure of quenched orthorhombic titanium aluminide-based alloy and phase transformations during subsequent heaing”, Phys. Met. Metallogr. 114, 529–534 (2013).

    Article  Google Scholar 

  22. 22

    A. G. Illarionov, O. G. Khadzhieva and O. A. Elkina, “Formation of the structure and properties upon the aging of a quenched alloy based on orthorhombic titanium aluminide Ti2AlNb alloyed with hydrogen”, Phys. Met. Metallogr. 119, 797–801 (2018).

    CAS  Article  Google Scholar 

  23. 23

    N. O. Osintseva, “Phase and structural transformations in hydrogen-containing alloys of the Ti–Al–V system”, Abstract of Candidate’s Dissertation in Engineering (MATI, Moscow, 2000) [in Russian].

  24. 24

    B. S. Krylov, Kinetics of hydrogen evolution in vacuum from titanium materials, in Titanium and its Alloys. Vol. 10. Study of Titanium Alloys (Izd-vo AN SSSR, Moscow, 1963), pp. 159–167 [in Russian].

  25. 25

    B. A. Kolachev, V. V. Sadkov, V. D. Talalaev, and A. V. Fishgoit, Vacuum Annealing of Titanium Structures (Mashinostroenie, Moscow, 1991) [in Russian].

    Google Scholar 

  26. 26

    F. Tang, T. Awane, and M. Hagiwara, “Effect of compositional modification on Young’s modulus of Ti2AlNb-based alloy”, Scr. Mater. 46, 143–147 (2002).

    CAS  Article  Google Scholar 

Download references


The work was supported by the resolution no. 211 of the government of the Russian Federation, contract no. 02.A03.21.0006, and by the state tasks of the Ministry of Education and Science of the Russian Federation for the Ural Federal University within the framework of the basic theme no. 11.8386.2017/BCh and for the Institute of Metal Physics, Ural Branch, Russian Academy of Sciences (code “Struktura”).

Author information



Corresponding author

Correspondence to A. G. Illarionov.

Additional information

Translated by G. Salnikov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Illarionov, A.G., Khadzhieva, O.G., Illarionova, S.M. et al. Formation of the Structure and Properties upon Thermohydrogen Treatment of the Alloy Based on Titanium Aluminide Ti2AlNb. Phys. Metals Metallogr. 120, 969–975 (2019).

Download citation


  • alloy based on the orthorhombic titanium aluminide
  • thermohydrogen treatment
  • hot deformation
  • dehydrogenating annealing
  • structure
  • properties
  • modulus of elasticity
  • hardness