Skip to main content
Log in

Microstructure Evolution and Mechanical Properties of the T6 Heat Treated AA6063 Alloy Produced by Squeeze Casting

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The influence of T6 heat treatment on the microstructure, hardness and tensile properties of cast AA6063 aluminum alloy was investigated as a function of squeeze casting pressure. The specimens elaborated were solution treated at 500°C for 8 hours and then were subjected to aging at 140°C. Various test techniques, including optical microscopy, scanning electron microscope, X-ray diffraction, tensile tests, and hardness were used to examine the effect of this alloy produced by the gravity and squeeze casting processes. The experimental results showed that Mg2Si and Al15Si2(FeMn)3 were the primary particles observed in the α-Al matrix. The effect of precipitation on the mechanical properties was investigated. The changes in mechanical properties were correlated with changes in microstructure evolution and Mg–Si precipitation. Furthermore, hardness and tensile properties increased with both heat treatment and squeeze pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. S. Karabay, M. Zeren, and M. Yilmaz, “Investigation of extrusion ratio effect on mechanical behaviour of extruded alloy AA-6101 from the billets homogenised-rapid quenched and as-cast conditions,” J. Mater. Process. Technol. 160, 138–147 (2004).

    Article  Google Scholar 

  2. J. F. Su, X. Nie, and V. Stoilov, “Characterization of fracture and debonding of Si particles in AlSi alloys,” Mater. Sci. Eng., A 527, 7168–7175 (2010).

    Article  Google Scholar 

  3. S. O. Adeosun, “Stress variation in cup forming,” Ph.D. Dissertation (Lagos, 2006).

  4. N. C. W. Kuijpers, W. H. Kool, P. T. G. Koenis, K. E. Nilsen, I. Todd, and S. van der Zwaag, “Assessment of diffrent techniques for quantification of α‑Al(FeMn)Si and β-AlFeSi intermetallics in AA 6xxx alloys,” Mater. Charact. 49, 409–420 (2003).

    Article  Google Scholar 

  5. G. Sha, K. O' Reilly, B. Cantor, J. Worth, and R. Hamerton, “Growth related metastable phase selection in a 6xxx series wrought Al alloy,” Mater. Sci. Eng., A 304–306, 612–616 (2001).

    Article  Google Scholar 

  6. L. Lasa and J. M. Rodriques-Ibade, “Wear behaviour of eutectic and hypereutectic Al-Si-Cu-Mg casting alloys tested against a composite brake pad,” Mater. Sci. Eng., A 363, 193–202 (2003).

    Article  Google Scholar 

  7. A. K. Gupta, D. J. Lloyd, and S. A. Court, “Precipitation hardening in Al–Mg–Si alloys with and without excess Si,” Mater. Sci. Eng., A 316, 11–17 (2001).

    Article  Google Scholar 

  8. S. O. Adeosun, S. A. Balogun, O. I. Sekunowo, and M. A. Usman, “Effects of heat treatment on strength and ductility of rolled and forged aluminum 6063 alloy,” J. Miner. Mater. Charact. Eng. 9, 763–773 (2010).

    Google Scholar 

  9. G. Mrówka-Nowotnik and J. Sieniawski, “Influence of heat treatment on the microstructure and mechanical properties of 6005 and 6082 aluminum alloys,” J. Mater. Process. Technol. 162163, 367–372 (2005).

    Article  Google Scholar 

  10. H. Zhao, H. Bai, J. Wang, and S. Guan, “Preparation of Al–Ti–C–Sr master alloys and their refining efficiency on A356 alloy,” Mater. Charact. 60, 377–383 (2009).

    Article  Google Scholar 

  11. Z. Muzaffer, K. Erdem, and G. Serap, “Influence of Cu addition on microstructure and hardness of near-eutectic Al–Si–xCu-alloys,” Trans. Nonferrous Met. Soc. China 21, 1698–1702 (2011).

    Article  Google Scholar 

  12. G. Mrówka-Nowotnik and J. Sieniawski, “Microstructure and mechanical properties of C355.0 cast aluminum alloy,” Arch. Comput. Mater. Sci. Surf. Eng. 47, 85–94 (2011).

    Google Scholar 

  13. D. L. Zhang, L. H. Zheng, and D. H. StJohn, “Effect of a short solution treatment time on microstructure and mechanical properties of modified Al–7 wt % Si–0.3 wt % Mg alloy,” J. Light Met. 2, 27–36 (2002).

    Article  Google Scholar 

  14. S. Souissi, M. Ben Amar, and C. Bradai, “Experimental investigation on microstructure and mechanical properties of direct squeeze cast Al–13% Si alloy,” Strength Mater. 44, 337–345 (2012).

    Article  Google Scholar 

  15. S. Souissi, M. Ben Amar, and C. Bradai, “Microstructure characterization and tensile properties of direct squeeze cast and gravity die cast 2017A wrought Al alloy,” Int. J. Mater. Forming 6, 249–254 (2013).

    Article  Google Scholar 

  16. H. Barhoumi, S. Souissi, M. Ben Amar, and F. Elhalouani, “Influence of heat treatment on the microstructures and mechanical properties of squeeze cast AlSi9Cu3 alloys,” Int. J. Microstruct. Mater. Prop. 10, 472–487 (2015).

    Google Scholar 

  17. H. Barhoumi, S. Souissi, M. Ben Amar, and F. Elhalouani, “Investigation of the microstructure and mechanical properties of squeeze cast Al–11%Si alloy heat treated,” Kovove Mater. 54, 249–256 (2016).

    Google Scholar 

  18. G. A. Chadwick and T. M. Yue, “Principles and applications of squeeze castings,” Met. Mater. 5, 6–12 (1989).

    Google Scholar 

  19. J. H. Lee, H. S. Kim, C. W. Won, and B. Cantor, “Effect of the gap distance on the cooling behavior and the microstructure of indirect squeeze cast and gravity die cast 5083 wrought Al alloy,” Mater. Sci. Eng., A 338, 182–190 (2002).

    Article  Google Scholar 

  20. G. H. Bray, M. Glazov, R. J. Rioja, and R. P. Gangloff, “Effect of artificial aging on the fatigue crack propagation resistance of 2000 series aluminum alloys,” Int. J. Fatigue 23, 265–276 (2001).

    Article  Google Scholar 

  21. M. Gavgali, Y. Totik, and R. Sadeler, “The effects of artificial aging on wear properties of AA 6063 alloy,” Mater. Lett. 57, 3713–3721 (2003).

    Article  Google Scholar 

  22. G. A. Edwards, K. Stiller, G. L. Dunlop, and M. J. Couper, “The precipitation sequence in Al–Mg–Si alloys,” Acta. Mater. 46, 3893–3904 (1998).

    Article  Google Scholar 

  23. G. Ran, J. E. Zhou, and Q. G. Wang, “Precipitates and tensile fracture mechanism in a sand cast A356 aluminum alloy,” J. Mater. Process. Technol. 207, 46–52 (2008).

    Article  Google Scholar 

  24. H. Yuan-chun, Y. Xu-yu, and Q. Tao, “Microstructure and mechanical properties of cryo-rolled AA6061 Al alloy,” Trans. Nonferrous Met. Soc. China. 26, 12–18 (2016).

    Article  Google Scholar 

  25. T. Kai, D. Qiang, and L. Yanjun, “Modelling microstructure evolution during casting, homogenization and ageing heat treatment of Al–Mg–Si–Cu–Fe–Mn alloys,” CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 63, 164–184 (2018).

    Article  Google Scholar 

  26. L. Zedi, L. Chong, L. Yongchang, Y. Liming, G. Qianying, and L. Huijun, “Effect of heat treatment on microstructure and mechanical property of Al–10% Mg2Si alloy,” J. Alloys Compd. 663, 16–19 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Souissi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souissi, S., Barhoumi, H., M. ben Amar et al. Microstructure Evolution and Mechanical Properties of the T6 Heat Treated AA6063 Alloy Produced by Squeeze Casting. Phys. Metals Metallogr. 120, 806–812 (2019). https://doi.org/10.1134/S0031918X19080167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X19080167

Keywords:

Navigation