Skip to main content
Log in

Solidification Behavior of YSZ@Ni Nanoparticles during Laser Cladding Process

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

In this study, yttria-stabilized zirconia (YSZ) nanoparticles with a core-shell structure (YSZ@Ni) were used to produce a YSZ/metal thermal barrier coating by the laser cladding process. The surface morphology, phase composition, and elemental distribution of the cladding layer were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS), respectively. Splashing of YSZ nanoparticles during the cladding process was reduced when they were encapsulated with nickel. It was found that primary phases of elliptically shaped YSZ and YSZ/(FeCr2O4) eutectic nanostructures formed in the center of the molten pool, whereas equiaxed YSZ crystals formed along the edges after the laser cladding. The results showed that aggregation of Ni was observed in the interlayer between the ceramic coating and the substrate. Ni-rich spheres were observed around the equiaxed YSZ crystals. Furthermore, the solidification behavior of YSZ@Ni core-shell nanoparticles was analyzed by studying the thermodynamics and kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. V. M. Schastlivtsev, N. K. Arkhipova, I. V. Blinov, I. V. Gervas’eva, B. A. Loginov, S. A. Matveev, V. V. Popov, D. P. Rodionov, and V. A. Sazonova, “Study of YSZ films deposited using electron-beam sputtering onto a nickel alloy with a perfect cube texture,” Phys. Met. Metallogr. 106, 590–596 (2008).

    Article  Google Scholar 

  2. N. P. Padture, M. Gell, and E. H. Jordan, “Thermal barrier coatings for gas-turbine engine applications,” Science 296, 280–284 (2002).

    Article  Google Scholar 

  3. M. Song, H. B. Guo, M. Abbas, and S. K. Gong, “Thermal deformation of Y2O3 partially stabilized ZrO2 coatings by digital image correlation method,” Surf. Coat. Technol. 216, 1–7 (2013).

    Article  Google Scholar 

  4. Y. Tan, H. Z. Zheng, G. F. Li, L. L. Xiong, and P. Peng, “Cohesive mechanism of the FeCr/Ni Interface: A first-principles study,” Met. Mater. Int. 22, 75–80 (2016).

    Article  Google Scholar 

  5. V. E. Panin, V. P. Sergeev, A. V. Panin, and Y. I. Pochivalov, “Nanostructuring of surface layers and production of nanostructured coatings as an effective method of strengthening modern structural and tool materials,” Phys. Met. Metallogr. 104, 627–636 (2007).

    Article  Google Scholar 

  6. D. F. Jiang, C. Hong, M. L. Zhong, M. Alkhayat, A. Weisheit, A. Gasser, H. J. Zhang, I. Kelbassa, and R. Poprawe, “Fabrication of nano-TiCp reinforced Inconel 625 composite coatings by partial dissolution of micro-TiCp through laser cladding energy input control,” Surf. Coat. Technol. 249, 125–131 (2014).

    Article  Google Scholar 

  7. D. D. Gu, Y. C. Hagedorn, W. Meiners, K. Wissenbach, and R. Poprawe, “Nanocrystalline TiC reinforced Ti matrix bulk-form nanocomposites by Selective Laser Melting (SLM): Densification, growth mechanism and wear behavior,” Compos. Sci. Technol. 71, 1612–1620 (2011).

    Article  Google Scholar 

  8. J. M. Kim, S. G. Lee, J. S. Park, and H. G. Kim, “Laser surface modification of Ti and TiC coatings on magnesium alloy,” Phys. Met. Metallogr. 115, 1389–1394 (2014).

    Article  Google Scholar 

  9. H. Z. Zheng, J. Zhang, S. Q. Lu, G. C. Wang, and Z. F. Xu, “Effect of core–shell composite particles on the sintering behavior and properties of nano-Al2O3/polystyrene composite prepared by SLS,” Mater. Lett. 60, 1219–1223 (2006).

    Article  Google Scholar 

  10. M. Aghasibeig and H. Fredriksson, “Laser cladding of a featureless iron-based alloy,” Surf. Coat. Technol. 209, 32–37 (2012).

    Article  Google Scholar 

  11. M. F. Morks, C. C. Berndt, Y. Durandet, M. Brandt, and J. Wang, “Microscopic observation of laser glazed yttria-stabilized zirconia coatings,” Appl. Surf. Sci. 256, 6213–6218 (2010).

    Article  Google Scholar 

  12. T. M. Yue, H. Xie, X. Lin, H. O. Yang, and G. H. Meng, “Solidification behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates,” J. Alloys Compd. 587, 588–593 (2014).

    Article  Google Scholar 

  13. R. Huang, Y. H. Wen, G. F. Shao, and S. G. Sun, “Insight into the melting behavior of Au–Pt core–shell nanoparticles from atomistic simulations,” J. Phys. Chem. C 117, 4278−4286 (2013).

    Article  Google Scholar 

  14. F. R. Liu, C. He, and J. M. Chen, “Modeling of the beam transportation behavior in selective laser transmission sintering the translucent core–shell composite powder,” Int. J. Mach. Tool. Manuf. 65, 22–28 (2013).

    Article  Google Scholar 

  15. P. Yu, H. Z. Zheng, G. F. Li, L. L. Xiong, and Q. H. Luo, “Synthesis of YSZ@Ni nanoparticle by modified electroless plating process,” J. Nanosci. Nanotechnol. 15, 9883–9886 (2015).

    Article  Google Scholar 

  16. W. I. Cho, S. J. Na, C. Thomy, and F. Vollertsen, “Numerical simulation of molten pool dynamics in high power disk laser welding,” J. Mater. Process. Technol. 212, 262–275 (2012).

    Article  Google Scholar 

  17. J. Zhang, H. J. Su, K. Song, L. Liu, and H. Z. Fu, “Microstructure, growth mechanism and mechanical property of Al2O3-based eutectic ceramic in situ composites,” J. Eur. Ceram. Soc. 31, 1191–1198 (2011).

    Article  Google Scholar 

  18. H. J. Su, J. Zhang, L. Liu, and H. Z. Fu, “Preparation and microstructure evolution of directionally solidified Al2O3/YAG/YSZ ternary eutectic ceramics by a modified electron beam floating zone melting,” Mater. Lett. 91, 92–95 (2013).

    Article  Google Scholar 

  19. H. J. Su, J. Zhang, Y. F. Deng, L. Liu, and H. Z. Fu, “Growth and characterization of nanostructured Al2O3/YAG/ZrO2hypereutectics with large surfaces under laser rapid solidification,” J. Cryst. Growth 312, 3637–3641 (2010).

    Article  Google Scholar 

  20. H. J. Su, J. Zhang, Y. F. Deng, L. Liu, and H. Z. Fu, “Effect of solidification path on the microstructure of Al2O3–Y2O3–ZrO2 ternary oxide eutectic ceramic system,” J. Eur. Ceram. Soc. 32, 3137–3142 (2012).

    Article  Google Scholar 

  21. X. S. Fu, G. Q. Chen, Y. F. Zu, J. T. Luo, and W. L. Zhou, “Microstructure refinement approaches of melt-grown Al2O3/YAG/ZrO2eutectic bulk,” Ceram Int. 39, 7445–7452 (2013).

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant no. 51361026), the Natural Science Foundation of Jiangxi province (Grant no. 20171BAB206006), the Key project of science and technology project of Jiangxi Provincial Education Department (Grant no. GJJ160678) and Open Foundation of National Defense Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University (GF201501004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Z. Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, F., Zheng, H.Z., Yu, P. et al. Solidification Behavior of YSZ@Ni Nanoparticles during Laser Cladding Process. Phys. Metals Metallogr. 120, 733–739 (2019). https://doi.org/10.1134/S0031918X1908009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X1908009X

Navigation