Skip to main content
Log in

Magnetic Structure and Ferroelectricity in Low-Dimensional Cuprates LiCu2O2 and NaCu2O2 as Determined by NMR Spectroscopy

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The results of NMR studies of the magnetic structures of LiCu2O2 and NaCu2O2 single crystals are summarized. The obtained data are discussed in the context of topical issues of the type of magnetic ordering in these compounds and the origin of ferroelectricity of LiCu2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. T. Masuda, A. Zheludev, A. Bush, M. Markina, and A. Vasiliev, “Competition between helimagnetism and commensurate quantum spin correlations in LiCu2O2,” Phys. Rev. Lett. 92, 177201 (2004).

    Article  Google Scholar 

  2. A. A. Gippius, E. N. Morozova, A. S. Moskvin, A. V. Zalessky, A. A. Bush, M. Baenitz, H. Rosner, and S.-L. Drechsler, “NMR and local-density-approximation evidence for spiral magnetic order in the chain cuprate LiCu2O2,” Phys. Rev. B 70, 020406 (2004).

    Article  Google Scholar 

  3. L. Capogna, M. Reehuis, A. Maljuk, R. K. Kremer, B. Ouladdiaf, M. Jansen, and B. Keimer, “Magnetic structure of the edge-sharing copper oxide chain compound NaCu2O2,” Phys. Rev. B 82, 014407 (2010).

    Article  Google Scholar 

  4. A. A. Bush, N. Büttgen, A. A. Gippius, M. Horvatić, M. Jeong, W. Kraetschmer, V. I. Marchenko, Yu. A. Sakhratov, and L. E. Svistov, “Exotic phases of frustrated antiferromagnet LiCu2O2,” Phys. Rev. B 97, 054428 (2018).

    Article  Google Scholar 

  5. A. A. Bush, V. N. Glazkov, M. Hagiwara, T. Kashiwagi, S. Kimura, K. Omura, L. A. Prozorova, L. E. Svistov, A. M. Vasiliev, and A. Zheludev, ”Magnetic phase diagram of the frustrated S = 1/2 chain magnet LiCu2O2,” Phys. Rev. B 85, 054421 (2012).

    Article  Google Scholar 

  6. Y. L. Xie, J. J. Ying, G. Wu, R. H. Liu, and X. H. Chen, “Spin orientation in spin frustrated system LiCu2O2,” Phys. E 42, 1579–1582 (2010).

    Article  Google Scholar 

  7. S. Furukawa, M. Sato, and S. Onoda, “Chiral order and electromagnetic dynamics in one-dimensional multiferroic cuprates,” Phys. Rev. Lett. 105, 257205 (2010).

    Article  Google Scholar 

  8. A. F. Sadykov, A. P. Gerashchenko, Yu. V. Piskunov, V. V. Ogloblichev, A. L. Buzlukov, S. V. Verkhovskii, A. Yu. Yakubovskii, and K. Kumagai, “Helical magnetic structure in a quasi-one-dimensional LiCu2O2 Multiferroic crystal according to 63,65Cu NMR studies,” JETP Lett. 92, 527–531 (2010).

    Article  Google Scholar 

  9. A. F. Sadykov, A. P. Gerashchenko, Yu. V. Piskunov, V. V. Ogloblichev, A. G. Smol’nikov, S. V. Verkhovskii, A. Yu. Yakubovskii, E. A. Tishchenko, and A. A. Bush, “Magnetic structure of low-dimensional LiCu2O2 multiferroic according to 63,65Cu and 7Li NMR studies,” J. Exp. Theor. Phys. 115, 666–672 (2012).

    Article  Google Scholar 

  10. A. F. Sadykov, A. P. Gerashchenko, Yu. V. Piskunov, V. V. Ogloblichev, A. G. Smol’nikov, S. V. Verkhovskii, A. L. Buzlukov, I. Yu. Arapova, Y. Furukawa, A. Yu. Yakubovskii, and A. A. Bush, “Magnetic structure of the low-dimensional magnet NaCu2O2: 63,65Cu and 23Na NMR studies,” J. Exp. Theor. Phys. 119, 870–879 (2014).

    Article  Google Scholar 

  11. A. F. Sadykov, Yu. V. Piskunov, A. P. Gerashchenko, V. V. Ogloblichev, A. G. Smol’nikov, S. V. Verkhovskii, I. Yu. Arapova, Z. N. Volkova, K. N. Mikhalev and A. A. Bush, “NMR study of the paramagnetic state of low-dimensional magnets LiCu2O2 and NaCu2O2,” J. Exp. Theor. Phys. 124, 286–294 (2017).

    Article  Google Scholar 

  12. A. F. Sadykov, Yu. V. Piskunov, A. P. Geraschenko, V. V. Ogloblichev, A. G. Smol’nikov, I. Yu. Arapova, Z. N. Volkova and A. A. Bush, “Spin dynamics in LiCu2O2 and NaCu2O2 low-dimensional helical magnets,” JETP Lett. 105, 715–720 (2017).

    Article  Google Scholar 

  13. S. Park, Y. J. Choi, C. L. Zhang, and S-W. Cheong, “Ferroelectricity in an S = 1/2 Chain Cuprate,” Phys. Rev. Lett. 98, 057601 (2007).

    Article  Google Scholar 

  14. H. Katsura, N. Nagaosa, and A. V. Balatsky, ”Spin current and magnetoelectric effect in noncollinear magnets,” Phys. Rev. Lett. 95, 057205 (2005).

    Article  Google Scholar 

  15. I. A. Sergienko and E. Dagotto, “Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites,“ Phys. Rev. B 73, 094434 (2006).

    Article  Google Scholar 

  16. A. S. Moskvin, Y. D. Panov, and S.-L. Drechsler, “Nonrelativistic multiferrocity in the nonstoichiometric spin-1/2 spiral-chain cuprate LiCu2O2,“ Phys. Rev. B 79, 104112 (2009).

    Article  Google Scholar 

  17. Yu. D. Panov, A. S. Moskvin, N. S. Fedorova, and S.‑L. Drechsler, “Nonstoichiometry effect on magnetoelectric coupling in cuprate multiferroics,” Ferroelectrics 442, 27–41 (2013).

    Article  Google Scholar 

  18. R. Berger, A. Meetsma, S. van Smaalen, and M. Sundberg, “The structure of LiCu202 with mixed-valence copper from twin-crystal data,” J. Less-Common Met. 175, 119–129 (1991).

    Article  Google Scholar 

  19. A. Maljuk, A. B. Kulakova, M. Sofin, L. Capogna, J. Strempfera, C. T. Lin, M. Jansen, and B. Keimer, “Flux-growth and characterization of NaCu2O2 single crystals,” J. Cryst. Growth 263, 338–343 (2004).

    Article  Google Scholar 

  20. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides,” Acta Crystallogr. A 32, 751–767 (1976).

    Article  Google Scholar 

  21. A. A. Bush, K. E. Kamentsev, E. A. Tishchenko, and V. V. Cherepanov, “Growth and properties of LiCu2O2–NaCu2O2 crystals,” 44, 628–634 (2008).

  22. A. G. Smol’nikov, V. V. Ogloblichev, S. V. Verkhovskii, K. N. Mikhalev, A. Yu. Yakubovskii, Y. Furukawa, Yu. V. Piskunov, A. F. Sadykov, S. N. Barilo and S. V. Shiryaev, “Specific Features of Magnetic Order in a Multiferroic Compound CuCrO2 Determined Using NMR and NQR Data for 63, 65Cu Nuclei,“ Phys. Met. Metallogr. 118, 134–142 (2017).

    Article  Google Scholar 

  23. R. Blinc, “Magnetic resonance and relaxation in structurally incommensurate system,” Phys. Rep. 79, 331–398 (1981).

    Article  Google Scholar 

  24. K. S. Okhotnikov, Magnetic interactions in strongly correlated electronic systems based on 3d elements, Cand. Sci. (Phys.–Math.) Dissertation (Moscow, 2009) [in Russian].

  25. L. Zhao, K.-W. Yeh, S. M. Rao, T. -W. Huang, P. Wu, W.-H. Chao, C.-T. Ke, C.-E. Wu, and M.-K. Wu, “Anisotropic dielectric and ferroelectric response of multiferroic LiCu2O2 in magnetic field,” Europhys. Lett. 97, 37004 (2012).

    Article  Google Scholar 

Download references

FUNDING

This study was supported by the Russian Science Foundation (project no. 16-12-10514).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Sadykov.

Additional information

Translated by D. Safin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadykov, A.F., Piskunov, Y.V., Ogloblichev, V.V. et al. Magnetic Structure and Ferroelectricity in Low-Dimensional Cuprates LiCu2O2 and NaCu2O2 as Determined by NMR Spectroscopy. Phys. Metals Metallogr. 120, 646–652 (2019). https://doi.org/10.1134/S0031918X19050156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X19050156

Keywords:

Navigation