Abstract
In this research indentation instrument testing is used as a new method for local characterization to study different zones of friction stir welded AA6061 alloy. For this purpose nanoindentation and microhardness are applied for samples in as-weld and post weld heat treatment conditions. Nugget zone, thermomechanically affected zone, and heat affected zone are examined by using nanoindentor in both conditions. The observations say that an estimation of the truncated indenter tip defect is necessary because of pile-up. Whereas post weld heat treatment (PWHT) can recover elastic modulus and nanohardness as well as hardness in AA6061 weldment.
Similar content being viewed by others
REFERENCES
D. M. Rodrigues, A. Loureiro, C. Leitao, R. M. Leal, B. M. Chaparro, and P. Vilaca, “Influence of friction stir welding parameters on the microstructural and mechanical properties of AA 6016-T4 thin welds,” Mater. Des. 30, 1913–1921 (2009).
R. S. Mishra and Z. Y. Ma, “Friction stir welding and processing,” Mater. Sci. Eng., R 50, 1–78 (2005).
G. Lucas, ”Aluminum structural applications,” Adv. Mater. Process. 149, 29–30 (1996).
D. Maisonnette, M. Suery, D. Neliasa, P. Chaudet, and T. Epicier, “Effects of heat treatments on the microstructure and mechanical properties of a 6061 aluminium alloy,” Mater. Sci. Eng., A 528, 2718–2724 (2011).
A. K. Gupta, D. J. Lloyd, and S. A. Court, “Precipitation hardening processes in an Al–0.4% Mg–1.3% Si–0.25% Fe Aluminum alloy,” Mater. Sci. Eng., A 301, 140–146 (2001).
F. Fadaeifard, Ka. Matori, F. Garavi, M. Al-Falahi, and G. Vahedi Sarrigani, “Effect of post weld heat treatment on microstructure and mechanical properties of gas tungsten arc welded AA6061-T6 alloy,” Trans. Nonferrous Met. Soc. China 26, 3102–3114 (2016).
O. R. Myhr, O. Grong, H. G. Fjar, and C. D. Marioara, “Modelling of the microstructure and strength evolution in Al–Mg–Si alloys during multistage thermal processing,” Acta Mater. 52, 4997–5008 (2004).
M. Guerra, C. Schmidt, J. C. McClure, L. E. Murr, and A. C. Nunes, “Flow patterns during friction stir welding, ” Mater. Charact. 49, 95–101 (2002).
E. P. Koumoulos, C. A. Charitidis, N. M. Daniolos, and D. I. Pantelis, “Nanomechanical properties of friction stir welded AA6082-T6 aluminum alloy,” Mater. Sci. Eng., B 176, 1585–1589 (2011).
C. A. Charitidis, D. A. Dragatogiannis, E. P. Koumoulos, and I. A. Kartsonakis, “Residual stress and deformation mechanism of friction stir welded aluminum alloys by nanoindentation,” Mater. Sci. Eng., A 540, 226–234 (2012).
M. Cabibbo, A. Forcellese, M. El-Mehtedi, and M. Simoncini, “Double side friction stir welding of AA6082 sheets: Microstructure and nanoindentation characterization,” Mater. Sci. Eng., A 590, 209–217 (2014).
C. D. Marioara, S. J. Andersen, T. N. Stene, H. S. Hasting, J. Walmsley, A. T. J. Van Helvoort, and R. Holmestad, “The effect of Cu on precipitation in Al–Mg–Si alloys,” Philos. Mag. 87, 3385–3413 (2007).
V. Fahimpour, S. K. Sadrnezhaad, and F. Karimzadeh, “Microstructure and mechanical property change during FSW and GTAW of Al6061 alloy,” Metall. Mater. Trans. A 44A, 2187–2195 (2013).
K. N. Krishnan, “The effect of post weld heat treatment on the properties of 6061 friction stir welded joints,” J. Mater. Sci. 37, 473–480 (2002).
K. Elangovan and V. Balasubramanian, “Influences of post-weld heat treatment on tensile properties of friction stir-welded AA6061 aluminum alloy joints,” Mater. Charact. 59, 1168–1177 (2008).
E. Totten George, ASM Handbook Volume 4E: Heat Treating of Nonferrous Alloys (ASM International, California, 2016).
W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 7, 1564–1583 (1992).
D. Chicot, NjockM. Yetna, E. S. Puchi-Cabrera, A. Iost, M. H. Staia, G. Louis, G. Bouscarrat, and R. Aumaitre, “A contact area function for Berkovich nanoindentation: Application to hardness determination of a TiHfCN thin film,” Thin Solid Films 558, 259–266 (2014).
M. Yetna Njock, D. Chicot, J. M. Ndjaka, J. Lesage, X. Decoopman, F. Roudet, and A. Mejias, “A criterion to identify sinking-in and piling-up in indentation of materials,” Int. J. Mech. Sci. 90, 145–150 (2015).
E. Hornbogen and U. Koster, Recrystallization of metallic materials, Ed. by F. Haessner and Dr. Riederer (Verlag, Stuttgart, 1978).
V. L. Niranjani, K. C. Hari Kumar, and V. Subramanya Sarma, “Development of high strength Al–Mg–Si AA6061 alloy through cold rolling and ageing,” Mater. Sci. Eng., A 515, 169–174 (2009).
D. A. Lucca, K. Herrmann, and M. J. Klopfstein, “Nanoindentation: Measuring methods and applications,” CIRP Ann. Manuf. Technol. 803, 803–819 (2010).
C. A. Fischer-Cripps, “Critical review of analysis and interpretation of nanoindentation test data,” Surf. Coat. Techol. 200, 4153–4165 (2006).
X. Li and B. Bhushan, “Fatigue studies of nanoscale structures for MEMS/NEMS applications using nanoindentation techniques,” Surf. Coat. Technol. 30, 163–164 (2002).
M. Mesbah, F. Fadaeifard, A. Karimzadeh, B. Nasiri-Tabrizi, A. Rafieerad, G. Faraji, and A. R. Bushroa, “Nano-mechanical properties and microstructure of UFG brass tubes processed by parallel tubular channel angular pressing,” Met. Mater. Int. 22, 1098–1107 (2016).
W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” J. Mater. Res. 19, 3–20 (2004).
J. L. Loubet, M. Bauer, A. Tonck, S. Bec, and B. Gauthier-Manuel, Nanoindentation with a Surface Force Apparatus, in Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, Ed. by M. Nastasi, D.M. Parkin, and H. Gleiter (Springer, Dordrecht, 1993).
D. Chicot, “Hardness length-scale factor to model nano-and micro-indentation size effects,” Mater. Sci. Eng., A 499, 454–461 (2009).
L. Charleux, V. Keryvin, M. Nivard, J. P. Guin, J. C. Sanglebœuf, and Y. Yokoyama, “A method for measuring the contact area in instrumented indentation testing by tip scanning probe microscopy imaging,” Acta Mater. 70, 249–258 (2014).
J. Gong, H. Miao, and Z. Peng, “On the contact area for nanoindentation tests with berkovich indenter: case study on soda-lime glass,” Mater. Lett. 58, 1349–1353 (2004).
T. Sawa, Correlation between Nanoindentation Test Result and Vickers Hardness, IMECO TC3, TC5 and TC22 Conf., Metrology in Modern Context (2010) 171–174.
FUNDING
The authors gratefully acknowledge the Universiti Putra Malaysia for the financial support extended to this research work.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Firouz Fadaeifard, Pakmanesh, M.R., Esfahani, M.S. et al. Nanoindentation Analysis of Friction Stir Welded 6061-T6 Al Alloy in As-Weld and Post Weld Heat Treatment. Phys. Metals Metallogr. 120, 483–491 (2019). https://doi.org/10.1134/S0031918X1905003X
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0031918X1905003X