Skip to main content
Log in

Nanoindentation Analysis of Friction Stir Welded 6061-T6 Al Alloy in As-Weld and Post Weld Heat Treatment

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

In this research indentation instrument testing is used as a new method for local characterization to study different zones of friction stir welded AA6061 alloy. For this purpose nanoindentation and microhardness are applied for samples in as-weld and post weld heat treatment conditions. Nugget zone, thermomechanically affected zone, and heat affected zone are examined by using nanoindentor in both conditions. The observations say that an estimation of the truncated indenter tip defect is necessary because of pile-up. Whereas post weld heat treatment (PWHT) can recover elastic modulus and nanohardness as well as hardness in AA6061 weldment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. D. M. Rodrigues, A. Loureiro, C. Leitao, R. M. Leal, B. M. Chaparro, and P. Vilaca, “Influence of friction stir welding parameters on the microstructural and mechanical properties of AA 6016-T4 thin welds,” Mater. Des. 30, 1913–1921 (2009).

    Article  Google Scholar 

  2. R. S. Mishra and Z. Y. Ma, “Friction stir welding and processing,” Mater. Sci. Eng., R 50, 1–78 (2005).

  3. G. Lucas, ”Aluminum structural applications,” Adv. Mater. Process. 149, 29–30 (1996).

    Google Scholar 

  4. D. Maisonnette, M. Suery, D. Neliasa, P. Chaudet, and T. Epicier, “Effects of heat treatments on the microstructure and mechanical properties of a 6061 aluminium alloy,” Mater. Sci. Eng., A 528, 2718–2724 (2011).

    Article  Google Scholar 

  5. A. K. Gupta, D. J. Lloyd, and S. A. Court, “Precipitation hardening processes in an Al–0.4% Mg–1.3% Si–0.25% Fe Aluminum alloy,” Mater. Sci. Eng., A 301, 140–146 (2001).

    Article  Google Scholar 

  6. F. Fadaeifard, Ka. Matori, F. Garavi, M. Al-Falahi, and G. Vahedi Sarrigani, “Effect of post weld heat treatment on microstructure and mechanical properties of gas tungsten arc welded AA6061-T6 alloy,” Trans. Nonferrous Met. Soc. China 26, 3102–3114 (2016).

    Article  Google Scholar 

  7. O. R. Myhr, O. Grong, H. G. Fjar, and C. D. Marioara, “Modelling of the microstructure and strength evolution in Al–Mg–Si alloys during multistage thermal processing,” Acta Mater. 52, 4997–5008 (2004).

    Article  Google Scholar 

  8. M. Guerra, C. Schmidt, J. C. McClure, L. E. Murr, and A. C. Nunes, “Flow patterns during friction stir welding, ” Mater. Charact. 49, 95–101 (2002).

    Article  Google Scholar 

  9. E. P. Koumoulos, C. A. Charitidis, N. M. Daniolos, and D. I. Pantelis, “Nanomechanical properties of friction stir welded AA6082-T6 aluminum alloy,” Mater. Sci. Eng., B 176, 1585–1589 (2011).

    Article  Google Scholar 

  10. C. A. Charitidis, D. A. Dragatogiannis, E. P. Koumoulos, and I. A. Kartsonakis, “Residual stress and deformation mechanism of friction stir welded aluminum alloys by nanoindentation,” Mater. Sci. Eng., A 540, 226–234 (2012).

    Article  Google Scholar 

  11. M. Cabibbo, A. Forcellese, M. El-Mehtedi, and M. Simoncini, “Double side friction stir welding of AA6082 sheets: Microstructure and nanoindentation characterization,” Mater. Sci. Eng., A 590, 209–217 (2014).

    Article  Google Scholar 

  12. C. D. Marioara, S. J. Andersen, T. N. Stene, H. S. Hasting, J. Walmsley, A. T. J. Van Helvoort, and R. Holmestad, “The effect of Cu on precipitation in Al–Mg–Si alloys,” Philos. Mag. 87, 3385–3413 (2007).

    Article  Google Scholar 

  13. V. Fahimpour, S. K. Sadrnezhaad, and F. Karimzadeh, “Microstructure and mechanical property change during FSW and GTAW of Al6061 alloy,” Metall. Mater. Trans. A 44A, 2187–2195 (2013).

    Article  Google Scholar 

  14. K. N. Krishnan, “The effect of post weld heat treatment on the properties of 6061 friction stir welded joints,” J. Mater. Sci. 37, 473–480 (2002).

    Article  Google Scholar 

  15. K. Elangovan and V. Balasubramanian, “Influences of post-weld heat treatment on tensile properties of friction stir-welded AA6061 aluminum alloy joints,” Mater. Charact. 59, 1168–1177 (2008).

    Article  Google Scholar 

  16. E. Totten George, ASM Handbook Volume 4E: Heat Treating of Nonferrous Alloys (ASM International, California, 2016).

    Book  Google Scholar 

  17. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 7, 1564–1583 (1992).

    Article  Google Scholar 

  18. D. Chicot, NjockM. Yetna, E. S. Puchi-Cabrera, A. Iost, M. H. Staia, G. Louis, G. Bouscarrat, and R. Aumaitre, “A contact area function for Berkovich nanoindentation: Application to hardness determination of a TiHfCN thin film,” Thin Solid Films 558, 259–266 (2014).

    Article  Google Scholar 

  19. M. Yetna Njock, D. Chicot, J. M. Ndjaka, J. Lesage, X. Decoopman, F. Roudet, and A. Mejias, “A criterion to identify sinking-in and piling-up in indentation of materials,” Int. J. Mech. Sci. 90, 145–150 (2015).

    Article  Google Scholar 

  20. E. Hornbogen and U. Koster, Recrystallization of metallic materials, Ed. by F. Haessner and Dr. Riederer (Verlag, Stuttgart, 1978).

  21. V. L. Niranjani, K. C. Hari Kumar, and V. Subramanya Sarma, “Development of high strength Al–Mg–Si AA6061 alloy through cold rolling and ageing,” Mater. Sci. Eng., A 515, 169–174 (2009).

    Article  Google Scholar 

  22. D. A. Lucca, K. Herrmann, and M. J. Klopfstein, “Nanoindentation: Measuring methods and applications,” CIRP Ann. Manuf. Technol. 803, 803–819 (2010).

    Article  Google Scholar 

  23. C. A. Fischer-Cripps, “Critical review of analysis and interpretation of nanoindentation test data,” Surf. Coat. Techol. 200, 4153–4165 (2006).

    Article  Google Scholar 

  24. X. Li and B. Bhushan, “Fatigue studies of nanoscale structures for MEMS/NEMS applications using nanoindentation techniques,” Surf. Coat. Technol. 30, 163–164 (2002).

    Article  Google Scholar 

  25. M. Mesbah, F. Fadaeifard, A. Karimzadeh, B. Nasiri-Tabrizi, A. Rafieerad, G. Faraji, and A. R. Bushroa, “Nano-mechanical properties and microstructure of UFG brass tubes processed by parallel tubular channel angular pressing,” Met. Mater. Int. 22, 1098–1107 (2016).

    Article  Google Scholar 

  26. W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” J. Mater. Res. 19, 3–20 (2004).

    Article  Google Scholar 

  27. J. L. Loubet, M. Bauer, A. Tonck, S. Bec, and B. Gauthier-Manuel, Nanoindentation with a Surface Force Apparatus, in Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, Ed. by M. Nastasi, D.M. Parkin, and H. Gleiter (Springer, Dordrecht, 1993).

    Google Scholar 

  28. D. Chicot, “Hardness length-scale factor to model nano-and micro-indentation size effects,” Mater. Sci. Eng., A 499, 454–461 (2009).

    Article  Google Scholar 

  29. L. Charleux, V. Keryvin, M. Nivard, J. P. Guin, J. C. Sanglebœuf, and Y. Yokoyama, “A method for measuring the contact area in instrumented indentation testing by tip scanning probe microscopy imaging,” Acta Mater. 70, 249–258 (2014).

    Article  Google Scholar 

  30. J. Gong, H. Miao, and Z. Peng, “On the contact area for nanoindentation tests with berkovich indenter: case study on soda-lime glass,” Mater. Lett. 58, 1349–1353 (2004).

    Article  Google Scholar 

  31. T. Sawa, Correlation between Nanoindentation Test Result and Vickers Hardness, IMECO TC3, TC5 and TC22 Conf., Metrology in Modern Context (2010) 171–174.

Download references

FUNDING

The authors gratefully acknowledge the Universiti Putra Malaysia for the financial support extended to this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Reza Pakmanesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firouz Fadaeifard, Pakmanesh, M.R., Esfahani, M.S. et al. Nanoindentation Analysis of Friction Stir Welded 6061-T6 Al Alloy in As-Weld and Post Weld Heat Treatment. Phys. Metals Metallogr. 120, 483–491 (2019). https://doi.org/10.1134/S0031918X1905003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X1905003X

Keywords:

Navigation