R. A. Harding and G. N. J. Gilbert, “Why the properties of ductile irons should interest engineers,” Br. Foundryman 79, 489–496 (1986).
Google Scholar
J. Dodd, “High strength, high ductility ductile irons,” Mod. Cast. 68
(5), 60–66 (1978).
Google Scholar
R. B. Gundlach and J. F. Janowak, “Development of a ductile iron for commercial austempering,” AFS Trans. 94, 377–388 (1983).
Google Scholar
M. Johansson, “Austenitic bainitic ductile iron,” AFS Trans. 85, 117–122 (1977).
Google Scholar
I. Schmidt and A. Schuchert, “Unlubricated wear of austempered ductile cast iron,” Z. Metallkd. 78, 871–875 (1987).
Google Scholar
Y. Sahin, M. Erdogan, and V. Kilicli, “Wear behavior of austempered ductile irons with dual matrix structures,” Mater. Sci. Eng., A 444, 31–38 (2007).
Article
Google Scholar
L. Bartosiewicz, A. R. Krause, F. A. Alberts, I. Singh, and S. K. Putatunda, “Influence of microstructure on high cycle fatigue behavior of austempered ductile cast iron,” Mater. Charact. 30, 221–234 (1993).
Article
Google Scholar
P. Shanmugam, P. P. Rao, K. R. Udupa, and N. Venkataraman, “Effect of microstructure on the fatigue strength of an austempered ductile Iron,” J. Mater. Sci. 29, 4933–4940 (1994).
Article
Google Scholar
L. Bartosiewicz, A. R. Krause, A. Sengupta, and S. K. Putatunda, “Relationship between fatigue threshold and fatigue strength in austempered ductile cast iron,” Int. Symp. Test. Failure Anal. 16, 323–336 (1990).
L. Bartosiewicz, S. Duraiswamy, A. Sengupta, and S. K. Putatunda, “Near threshold fatigue crack growth behavior of austempered ductile cast iron,” Morris Fine Symp., TMS, Detroit, pp. 135–138 (1991).
P. P. Rao and S. K. Putatunda, “Influence of microstructure on fracture toughness of austempered ductile cast iron,” Metall. Mater. Trans. A 28, 1457–1470 (1997).
Article
Google Scholar
J. F. Janowak and P. A. Norton, “A guide to mechanical properties possible by austempering, 1.5% Ni, 0.3% Mo iron,” AFS Trans. 88, 123–135 (1985).
Google Scholar
S. K. Putatunda and I. Singh, “Fracture toughness of unalloyed austempered ductile cast iron,” J. Test. Eval. 23, 325–332 (1995).
Article
Google Scholar
J. L. Doong and C. Chen, “Fracture toughness of bainitic-nodular cast iron,” Fatigue Fract. Eng. Mater. Struct. 12, 155–165 (1989).
Article
Google Scholar
S. K. Putatunda, S. Kesani, R. Tackett, and G. Lawes, “Development of austenite free ADI (austempered ductile cast iron),” Mater. Sci. Eng., A 435–436, 112–122 (2006).
Article
Google Scholar
D. J. Moore, T. N. Rouns, and K. B. Rundamn, “The effect of heat treatment, mechanical deformation, and alloying element additions on the rate of bainite formation in austempered ductile irons,” J. Heat Treat. 4, 7–24 (1985).
Article
Google Scholar
J. F. Janowak, R. B. Gundlach, G. T. Eldis, and K. Rohrting, “Technical advances in cast iron metallurgy,” AFS Int. Cast. Met. J. 6, 28–42 (1982).
Google Scholar
O. Eric, L. Sidjanin, Z. Miskovic, S. Zec, and M. T. Jovanovic, “Microstructure and toughness of Cu–Ni–Mo austempered ductile iron,” Mater. Lett. 58, 2707–2711 (2004).
Article
Google Scholar
J. Yang and S. K. Putatunda, “Improvement in strength and toughness of austempered ductile cast iron by a novel two-step austempering process,” Mater. Des. 25, 219–230 (2004).
Article
Google Scholar
A. R. Kiani-Rashid, “The bainite transformation and the carbide precipitation of 4.88% aluminium austempered ductile iron investigated using electron microscopy,” J. Alloys Compd. 477, 490–198 (2009).
Article
Google Scholar
T. Ohide and K. Ikawan, “Effect of vanadium on the as-cast and isothermally transformed structures of spheroidal graphite cast iron,” J. Jpn. Foundrym. Soc. 57, 522–527 (1985).
Google Scholar
S. S. Maselenkov, V. A. Teikh, G. I. Silman, and V. K. Thomas, “Distribution of V, Mo, Cu, and W in cast iron,” J. Rus. Cast. Prod., 375–377 (1969).
A. S. Filippov, E. M. Blank, and V. S. Ivelier, “Influence of vanadium additions on the structure and properties of irons,” J. Rus. Cast. Prod., 289–291 (1969).
R. Barton, “The influence of alloying elements in cast iron,” J. Br. Cast Iron Res. Assoc. 8, 567–585 (1960).
Google Scholar
J. V. Dawson, “Vanadium in cast iron,” UK Inter. Exch. Pap., 1–16 (1982).
D. Myszkaa and T. Gietka, “Comparing the possibilities of austenite content determination in austempered ductile iron,” Arch. Found. Eng. 11, 135–140 (2011).
Google Scholar
T. Gietka and S. Dymski, “The attempt at evaluation of the ADI microstructure with the use of the image analysis,” Arch. Found. Eng. 10, 57–62 (2010).
Google Scholar
B. D. Cullity, Elements of X-ray Diffraction, 2nd ed. Wiley, New York (1974).
Google Scholar
M. Rezvani, R. A. Harding, and J. Campbell, “The effect of vanadium in as-cast ductile iron,” Int. J. Cast Met. Res. 10, 1–15 (1997).
Article
Google Scholar
J. A. Todd and P. Li, “Microstructure mechanical properties relationships in isothermally transformed vanadium steels,” Metall. Trans. A 17, 1991–1202 (1986).
Article
Google Scholar
H. S. Ubhi and T. N. Baker, “The influence of manganese and silicon on the precipitation of vanadium carbide in steel,” Mater. Sci. Eng., A 111, 189–199 (1989).
Article
Google Scholar
S. Laino, J. A. Sikora, and R. C. Dommarco, “Development of wear resistant carbidic austempered ductile iron (CADI),” Wear 265, 1–7 (2008).
Article
Google Scholar
X. Sun, Y. Wang, D. Y. Li, and G. Wang, “Modification of carbidic austempered ductile iron with nano ceria for improved mechanical properties and abrasive wear resistance,” Wear 301, 116–121 (2013).
Article
Google Scholar
M. J. Crooks, A. J. Garrate-Reed, J. B. Van der Sande, and W. S. Owen, “The isothermal austenite ferrite transformation in some deformed vanadium steels,” Metall. Trans. A 13, 1347–1353 (1982).
Article
Google Scholar
D. Fan, L. Chen, and S. P. Ping, “Numerical simulation of Zener pinning with growing second-phase particles,” J. Am. Ceram. Soc. 81, 526–532 (1998).
Article
Google Scholar
J. Campbell, Castings, 2nd ed. (Butterworth-Heinemann, Oxford, 2003).
Google Scholar