Skip to main content

A Study of Effect of Vanadium on Microstructure and Mechanical Properties of As-Cast and Austempered Ductile Iron

Abstract

The presence of vanadium, as an alloying element, has various effects on the properties of cast irons. In this research, the effects of adding different amounts of vanadium, including 0, 0.87, and 1.45 wt % V, on the microstructure, the formation of different phases, and the mechanical properties of the as-cast and austempered ductile iron have been investigated. After the casting of samples, preparation of the samples, and determining of their chemical composition, it is austenitization heat treatment at 900°C for 45 minutes and austempering heat treatment at 350°C for 60 minutes that were carried out on the samples. Tensile and impact tests, as well as X-ray diffraction (XRD) analysis and metallography, were conducted to study the mechanical properties and the structure. The microstructures of the samples included carbides in the ausferrite matrix. The results show that with increasing the vanadium, tensile strength and impact energy decrease in as-cast ductile iron, whereas heat treatment can improve them.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. R. A. Harding and G. N. J. Gilbert, “Why the properties of ductile irons should interest engineers,” Br. Foundryman 79, 489–496 (1986).

    Google Scholar 

  2. J. Dodd, “High strength, high ductility ductile irons,” Mod. Cast. 68 (5), 60–66 (1978).

    Google Scholar 

  3. R. B. Gundlach and J. F. Janowak, “Development of a ductile iron for commercial austempering,” AFS Trans. 94, 377–388 (1983).

    Google Scholar 

  4. M. Johansson, “Austenitic bainitic ductile iron,” AFS Trans. 85, 117–122 (1977).

    Google Scholar 

  5. I. Schmidt and A. Schuchert, “Unlubricated wear of austempered ductile cast iron,” Z. Metallkd. 78, 871–875 (1987).

    Google Scholar 

  6. Y. Sahin, M. Erdogan, and V. Kilicli, “Wear behavior of austempered ductile irons with dual matrix structures,” Mater. Sci. Eng., A 444, 31–38 (2007).

    Article  Google Scholar 

  7. L. Bartosiewicz, A. R. Krause, F. A. Alberts, I. Singh, and S. K. Putatunda, “Influence of microstructure on high cycle fatigue behavior of austempered ductile cast iron,” Mater. Charact. 30, 221–234 (1993).

    Article  Google Scholar 

  8. P. Shanmugam, P. P. Rao, K. R. Udupa, and N. Venkataraman, “Effect of microstructure on the fatigue strength of an austempered ductile Iron,” J. Mater. Sci. 29, 4933–4940 (1994).

    Article  Google Scholar 

  9. L. Bartosiewicz, A. R. Krause, A. Sengupta, and S. K. Putatunda, “Relationship between fatigue threshold and fatigue strength in austempered ductile cast iron,” Int. Symp. Test. Failure Anal. 16, 323–336 (1990).

  10. L. Bartosiewicz, S. Duraiswamy, A. Sengupta, and S. K. Putatunda, “Near threshold fatigue crack growth behavior of austempered ductile cast iron,” Morris Fine Symp., TMS, Detroit, pp. 135–138 (1991).

  11. P. P. Rao and S. K. Putatunda, “Influence of microstructure on fracture toughness of austempered ductile cast iron,” Metall. Mater. Trans. A 28, 1457–1470 (1997).

    Article  Google Scholar 

  12. J. F. Janowak and P. A. Norton, “A guide to mechanical properties possible by austempering, 1.5% Ni, 0.3% Mo iron,” AFS Trans. 88, 123–135 (1985).

    Google Scholar 

  13. S. K. Putatunda and I. Singh, “Fracture toughness of unalloyed austempered ductile cast iron,” J. Test. Eval. 23, 325–332 (1995).

    Article  Google Scholar 

  14. J. L. Doong and C. Chen, “Fracture toughness of bainitic-nodular cast iron,” Fatigue Fract. Eng. Mater. Struct. 12, 155–165 (1989).

    Article  Google Scholar 

  15. S. K. Putatunda, S. Kesani, R. Tackett, and G. Lawes, “Development of austenite free ADI (austempered ductile cast iron),” Mater. Sci. Eng., A 435–436, 112–122 (2006).

    Article  Google Scholar 

  16. D. J. Moore, T. N. Rouns, and K. B. Rundamn, “The effect of heat treatment, mechanical deformation, and alloying element additions on the rate of bainite formation in austempered ductile irons,” J. Heat Treat. 4, 7–24 (1985).

    Article  Google Scholar 

  17. J. F. Janowak, R. B. Gundlach, G. T. Eldis, and K. Rohrting, “Technical advances in cast iron metallurgy,” AFS Int. Cast. Met. J. 6, 28–42 (1982).

    Google Scholar 

  18. O. Eric, L. Sidjanin, Z. Miskovic, S. Zec, and M. T. Jovanovic, “Microstructure and toughness of Cu–Ni–Mo austempered ductile iron,” Mater. Lett. 58, 2707–2711 (2004).

    Article  Google Scholar 

  19. J. Yang and S. K. Putatunda, “Improvement in strength and toughness of austempered ductile cast iron by a novel two-step austempering process,” Mater. Des. 25, 219–230 (2004).

    Article  Google Scholar 

  20. A. R. Kiani-Rashid, “The bainite transformation and the carbide precipitation of 4.88% aluminium austempered ductile iron investigated using electron microscopy,” J. Alloys Compd. 477, 490–198 (2009).

    Article  Google Scholar 

  21. T. Ohide and K. Ikawan, “Effect of vanadium on the as-cast and isothermally transformed structures of spheroidal graphite cast iron,” J. Jpn. Foundrym. Soc. 57, 522–527 (1985).

    Google Scholar 

  22. S. S. Maselenkov, V. A. Teikh, G. I. Silman, and V. K. Thomas, “Distribution of V, Mo, Cu, and W in cast iron,” J. Rus. Cast. Prod., 375–377 (1969).

  23. A. S. Filippov, E. M. Blank, and V. S. Ivelier, “Influence of vanadium additions on the structure and properties of irons,” J. Rus. Cast. Prod., 289–291 (1969).

  24. R. Barton, “The influence of alloying elements in cast iron,” J. Br. Cast Iron Res. Assoc. 8, 567–585 (1960).

    Google Scholar 

  25. J. V. Dawson, “Vanadium in cast iron,” UK Inter. Exch. Pap., 1–16 (1982).

  26. D. Myszkaa and T. Gietka, “Comparing the possibilities of austenite content determination in austempered ductile iron,” Arch. Found. Eng. 11, 135–140 (2011).

    Google Scholar 

  27. T. Gietka and S. Dymski, “The attempt at evaluation of the ADI microstructure with the use of the image analysis,” Arch. Found. Eng. 10, 57–62 (2010).

    Google Scholar 

  28. B. D. Cullity, Elements of X-ray Diffraction, 2nd ed. Wiley, New York (1974).

    Google Scholar 

  29. M. Rezvani, R. A. Harding, and J. Campbell, “The effect of vanadium in as-cast ductile iron,” Int. J. Cast Met. Res. 10, 1–15 (1997).

    Article  Google Scholar 

  30. J. A. Todd and P. Li, “Microstructure mechanical properties relationships in isothermally transformed vanadium steels,” Metall. Trans. A 17, 1991–1202 (1986).

    Article  Google Scholar 

  31. H. S. Ubhi and T. N. Baker, “The influence of manganese and silicon on the precipitation of vanadium carbide in steel,” Mater. Sci. Eng., A 111, 189–199 (1989).

    Article  Google Scholar 

  32. S. Laino, J. A. Sikora, and R. C. Dommarco, “Development of wear resistant carbidic austempered ductile iron (CADI),” Wear 265, 1–7 (2008).

    Article  Google Scholar 

  33. X. Sun, Y. Wang, D. Y. Li, and G. Wang, “Modification of carbidic austempered ductile iron with nano ceria for improved mechanical properties and abrasive wear resistance,” Wear 301, 116–121 (2013).

    Article  Google Scholar 

  34. M. J. Crooks, A. J. Garrate-Reed, J. B. Van der Sande, and W. S. Owen, “The isothermal austenite ferrite transformation in some deformed vanadium steels,” Metall. Trans. A 13, 1347–1353 (1982).

    Article  Google Scholar 

  35. D. Fan, L. Chen, and S. P. Ping, “Numerical simulation of Zener pinning with growing second-phase particles,” J. Am. Ceram. Soc. 81, 526–532 (1998).

    Article  Google Scholar 

  36. J. Campbell, Castings, 2nd ed. (Butterworth-Heinemann, Oxford, 2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Honarbakhshraouf or H. Abdollah-Pour.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bakhshinezhad, H., Honarbakhshraouf, A. & Abdollah-Pour, H. A Study of Effect of Vanadium on Microstructure and Mechanical Properties of As-Cast and Austempered Ductile Iron. Phys. Metals Metallogr. 120, 441–446 (2019). https://doi.org/10.1134/S0031918X19050016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X19050016

Keywords:

  • ductile iron
  • austempering
  • vanadium
  • microstructure
  • mechanical properties
  • X-ray diffraction