Skip to main content

Electronic Structure and Magnetic Properties of Strongly Correlated Transition Metal Compounds


Different classes of compounds based on transition metals belong to strongly correlated compounds due to strong interactions of d and f electrons with each other and with itinerant electronic states. This results in a number of interesting phenomena, including metal–insulator and various magnetic spin transitions, “heavy fermion” compounds, interplay between magnetic order and superconductivity, formation of local magnetic moments, anomalies of transport properties, etc. Recent results in this field based on applications of ab initio approaches and dynamical mean-field theory are reviewed in this paper.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. 1

    J. M. Rondinelli, K. R. Poeppelmeier, and A. Zunger, “Research Update: Towards designed functionalities in oxide-based electronic materials,” APL Mater. 3, 080702 (2015).

    Article  Google Scholar 

  2. 2

    V. I. Anisimov, V. V. Dremov, M. A. Korotin, G. N. Rykovanov, and V. V. Ustinov, “First principles electronic structure calculation and simulation of the evolution of radiation defects in plutonium by the density functional theory and the molecular dynamics approach,” Phys. Met. Metallogr. 114, 1087–1122 (2013).

    Article  Google Scholar 

  3. 3

    M. A. Korotin, Z. V. Pchelkina, N. A. Skorikov, A. V. Efremov, and V. I. Anisimov, “Electronic structure of UO2.12 calculated in the coherent potential approximation taking into account strong electron correlations and spin-orbit coupling,” Phys. Met. Metallogr. 117, 655–664 (2016).

    Article  Google Scholar 

  4. 4

    R. Arita, K. Kuroki, K. Held, A. V. Lukoyanov, S. Skornyakov, and V. I. Anisimov, “Origin of large thermopower in LiRh2O4: Calculation of the Seebeck coefficient of local density approximation and dynamical mean-field theory,” Phys. Rev. B 78, 115 121 (2008).

    Article  Google Scholar 

  5. 5

    E. I. Shreder, A. A. Makhnev, A. V. Lukoyanov, and K. G. Suresh, “Optical properties and the electron structure of Co2TiGe and Co2TiSn Heusler alloys,” Phys. Met. Metallogr. 118, 965–969 (2017).

    Article  Google Scholar 

  6. 6

    M. R. Norman, “Materials design for new superconductors,” Rep. Prog. Phys. 79, 074502 (2016).

    Article  Google Scholar 

  7. 7

    R. O. Jones, “Density functional theory: Its origins, rise to prominence, and future,” Rev. Mod. Phys. 87, 897–923 (2015).

    Article  Google Scholar 

  8. 8

    A. O. Shorikov, A. V. Lukoyanov, M. A. Korotin, and V. I. Anisimov, “Magnetic state and electronic structure of the delta and alpha phases of metallic Pu and its compounds,” Phys. Rev. B 72, 024458 (2005).

    Article  Google Scholar 

  9. 9

    G. Kotliar and D. Vollhardt, “Strongly correlated materials: Insights from dynamical mean-field theory,” Phys. Today 57, 53–59 (2004).

    Article  Google Scholar 

  10. 10

    V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O. Anokhin, and G. Kotliar, “First-principles calculations of the electronic structure and spectra of strongly correlated systems: Dynamical mean-field theory,” J. Phys.: Condens. Matter 9, 7359–7368 (1997).

    Google Scholar 

  11. 11

  12. 12

    A. A. Dyachenko, A. O. Shorikov, A. V. Lukoyanov, and V. I. Anisimov, “Two successive spin transitions in a wide range of pressure and coexistence of high- and low-spin states in clinoferrosilite FeSiO3,” Phys. Rev. B 93, 245121 (2016).

    Article  Google Scholar 

  13. 13

    A. A. Dyachenko, A. O. Shorikov, and V. I. Anisimov, “Phase transitions in FeBO3 under pressure: DFT+DMFT study”, JETP Lett. 106, 317–323 (2017).

    Article  Google Scholar 

  14. 14

    S. L. Skornyakov, V. I. Anisimov, D. Vollhardt, and I. Leonov, “Effect of electron correlations on the electronic structure and phase stability of FeSe upon lattice expansion,” Phys. Rev. B 96, 035137 (2017).

    Article  Google Scholar 

  15. 15

    S. L. Skornyakov, I. Leonov, and V. I. Anisimov, “Effect of magnetic order on the phase stability of the parent chalcogenide compound FeSe,” JETP Lett. 103, 265–268 (2016).

    Article  Google Scholar 

  16. 16

    A. V. Lukoyanov, A. O. Shorikov, and V. I. Anisimov, “Electronic structure of the NpMT 5 (M = Fe, Co, Ni; T = Ga, In) series of neptunium compounds,” Phys. Solid State 58, 438–443 (2016).

    Article  Google Scholar 

  17. 17

    A. V. Lukoyanov and V. I. Anisimov, “Electronic structure of nitrides PuN and UN,” J. Exp. Theor. Phys. 123, 864–868 (2016).

    Article  Google Scholar 

  18. 18

    S. Gupta, K. G. Suresh, A. V. Lukoyanov, Yu. V. Knyazev, Yu. I. Kuz’min, “Magnetism, electronic structure and optical properties of TbNiGe2,” J. Alloys Compd. 664, 120–124 (2016).

    Article  Google Scholar 

  19. 19

    Yu. V. Knyazev, A. V. Lukoyanov, Yu. I. Kuz’min, S. Gupta, and K. G. Suresh, “Electronic structure of the TbMn0.33Ge2 compound: Band calculation and optical experiment,” Phys. Solid State 58, 2373–2378 (2016).

    Article  Google Scholar 

  20. 20

    S. Gupta, K. G Suresh, A. V. Lukoyanov, Yu. V. Knyazev, and Yu. I. Kuz’min, “Theoretical and experimental investigations on the magnetic and related properties of RAgSn2 (R = Ho, Er) compounds,” J. Mater. Sci. 51, 6341–6347 (2016).

    Article  Google Scholar 

Download references


The research was carried out within the state assignment of FASO of Russia (theme Electron АААА-А18-118020190098-5).

Author information



Corresponding author

Correspondence to V. I. Anisimov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anisimov, V.I., Lukoyanov, A.V. & Skornyakov, S.L. Electronic Structure and Magnetic Properties of Strongly Correlated Transition Metal Compounds. Phys. Metals Metallogr. 119, 1254–1258 (2018).

Download citation


  • electronic structure
  • strongly correlated compounds
  • optical properties