Skip to main content
Log in

Scenarios of Nonequilibrium Phase Transformations in Alloys Depending on the Temperature and Intensity of Plastic Deformation

  • THEORY OF METALS
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Based on analyzing experimental data and existing theoretical approaches, this study has formulated concepts of regular change in scenarios of phase transformations developing under severe plastic deformation. Depending on the temperature and deformation conditions, the dissipation of delivered energy can be realized by various routes (dislocation glide and climb, dynamic recrystallization, amorphization, and redistribution of alloy components), giving rise to a diversity of observed phase and structural states. A diagram of nonequilibrium states of alloy as a function of conditions of severe plastic deformation has been proposed. The applicability of the presented concepts has been demonstrated for a wide range of alloys and compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. E. Ermakov, “Solid-phase reactions, nonequilibrium structures, and magnetism of 3d compounds with different types of chemical bonds,” Fiz. Met. Metalloved., No. 11, 5–45 (1991).

  2. V. V. Sagaradze and V. A. Shabashov, “Anomalous diffusion phase transformations in steels upon severe cold deformation,” Phys. Met. Metallogr. 112, 146–164 (2011).

    Article  Google Scholar 

  3. E. I. Teitel’, L. S. Metlov, D. V. Gunderov, and A. V. Korznikov, “On the structural and phase transformations in solids induced by severe plastic deformation,” Phys. Met. Metallogr. 113, 1162–1168 (2012).

    Article  Google Scholar 

  4. Yu. A. Skakov, “Formation and stability of metastable phases in mechanochemical synthesis,” Metalloved. Term. Obrab. Met., No. 7, 45–54 (2005).

  5. A. E. Ermakov, V. L. Gapontsev, V. V. Kondrat’ev, and Yu. N. Gornostyrev, “Deformation-induced phase instability in nanocrystalline alloys,” Phys. Met. Metallogr. 88, 211–218 (1999).

    Google Scholar 

  6. M. A. Shtremel’, “Notice on the article of V. L. Gapontsev and V. M. Koloskov “Induced diffusion as the main mechanism of the formation of activated alloys”,” Metalloved. Term. Obrab. Met., No. 11, 18–20 [in Russian].

  7. B. B. Straumal, A. A. Mazilkin, B. Baretzky, G. Schutz, E. Rabkin, and R. Z. Valiev, “Accelerated diffusion and phase transformations in Co–Cu alloys driven by the severe plastic deformation,” Mater. Trans. 53, 63–71 (2012).

    Article  Google Scholar 

  8. H. Bakker, G. F. Zhou, and H. Yang, “Mechanically driven disorder and phase transformations in alloys,” Prog. Mater. Sci. 39, 159–241 (1995).

    Article  Google Scholar 

  9. G. Martin and P. Bellon, “Driven alloys,” Solid State Phys. 50, 189–331 (1997).

    Article  Google Scholar 

  10. C. Suryanarayana, “Mechanical alloying,” Prog. Mater. Sci. 46, 1–184 (2001).

    Article  Google Scholar 

  11. N. Wanderka, U. Czubayko, V. Naundorf, V. A. Ivchenko, A. Ye. Ermakov, M. A. Uimin, and H. Wollenberger, “Characterization of nanoscaled heterogeneities in mechanically alloyed and compacted CuFe,” Ultramicroscopy 89, 189–194 (2001).

    Article  Google Scholar 

  12. V. V. Cherdyntsev and S. D. Kaloshkin, “On the kinetics of phase and structural transformations upon mechanical alloying,” Phys. Met. Metallogr. 109, 492–504 (2010).

    Article  Google Scholar 

  13. G. A. Dorofeev and E. P. Elsukov, “Mechanical alloying of the Fe–Pb system immiscible in the equilibrium state,” Phys. Met. Metallogr. 103, 593–599 (2007).

    Article  Google Scholar 

  14. E. P. Yelsukov, G. A. Dorofeev, V. A. Barinov, T. F. Grigor’eva, and V. V. Boldyrev, “Solid state reactions in the Fe–Sn system under mechanical alloying and grinding,” Mater. Sci. Forum 269–272, 151–156 (1998).

    Article  Google Scholar 

  15. T. P. Tolmachev, V. P. Pilyugin, A. I. Ancharov, E. G. Chernyshev, and A. M. Patselov, “The formation, structure, and properties of the Au–Co alloys produced by severe plastic deformation under pressure,” Phys. Met. Metallogr. 117, 135–142 (2016).

    Article  Google Scholar 

  16. V. V. Sagaradze, V. A. Shabashov, K. A. Kozlov, N. V. Kataeva, V. A. Zavalishin, S. V. Afanas’ev, A. E. Zamatovskii, A. V. Litvinov, and K. A. Lyashkov, “Intensification of deformation-induced diffusion processes of the dissolution of intermetallic compounds in iron-based alloys at cryogenic temperatures,” Phys. Met. Metallogr. 116, 1002–1014 (2015).

    Article  Google Scholar 

  17. V. V. Sagaradze, V. A. Shabashov, N. V. Kataeva, V. A. Zavalishin, K. A. Kozlov, A. R. Kuznetsov, A. V. Litvinov, and V. P. Pilyugin, “Deformation-induced dissolution of the intermetallics Ni3Ti and Ni3Al in austenitic steels at cryogenic temperatures,” Philos. Mag. 96, 1724–1743 (2016).

    Article  Google Scholar 

  18. V. A. Shabashov, A. V. Makarov, K. A. Kozlov, V. V. Sagaradze, A. E. Zamatovskii, E. G. Volkova, and S. N. Luchko, “Deformation-induced dissolution and precipitation of nitrides in austenite and ferrite of a high-nitrogen stainless steel,” Phys. Met. Metallogr. 119, 180–190 (2018).

    Article  Google Scholar 

  19. A. V. Makarov, S. N. Luchko, V. A. Shabashov, E. G. Volkova, A. L. Osintseva, A. E. Zamatovskii, A. V. Litvinov, and V. V. Sagaradze, “Structural and phase transformations and micromechanical properties of the high-nitrogen austenitic steel deformed by shear under pressure,” Phys. Met. Metallogr. 118, 52–64 (2017).

    Article  Google Scholar 

  20. A. N. Petrova, Kh. Radzishevska, L. Kachmarek, M. Klikh, I. G. Brodova, and M. Steglinski, “Influence of megaplastic deformation on the structure and hardness of Al–Cu–Mg Alloy after aging,” Phys. Met. Metallogr. 117, 1237–1244 (2016).

    Article  Google Scholar 

  21. V. S. Gaviko, A. G. Popov, A. S. Ermolenko, N. N. Shchegoleva, V. V. Stolyarov, and D. V. Gunderov, “Decomposition of the Nd2Fe14B intermetallic compound upon severe plastic deformation by shear under pressure,” Phys. Met. Metallogr. 92, 158–166 (2001).

    Google Scholar 

  22. A. G. Popov, V. S. Gaviko, and N. N. Shchegoleva, “High-pressure-torsion deformation of melt-spun Nd9Fe85B6 alloy,” Phys. Met. Metallogr. 104, 238–247 (2007).

    Article  Google Scholar 

  23. F. Wu, D. Isheim, P. Bellon, and D. N. Seidman, “Nanocomposites stabilized by elevated-temperature ball milling of Ag50Cu50 powders: An atom probe tomographic study,” Acta Mater. 54, 2605–2613 (2006).

    Article  Google Scholar 

  24. M. S. El-Eskandarany, K. Aoki, K. Sumiyama, and K. Suzuki, “Cyclic phase transformations of mechanically alloyed Co75Ti25 powders,” Acta Metall. 50, 1113–1123 (2002).

    Google Scholar 

  25. M. S. El-Eskandarany, K. Aoki, K. Sumiyama, and K. Suzuki, “Cyclic crystalline-amorphous transformations of mechanically alloyed Co75Ti25,” Appl. Phys. Lett. 70, 1679–1681 (1997).

    Article  Google Scholar 

  26. V. A. Tsurin, V. A. Barinov, and S. B. Pupyshev, “Spatio-temporal oscillations of concentrations during mechanical alloying of powders Fe–B,” Pis’ma Zh. Tekh. Fiz. 21, 20–23 (1995).

    Google Scholar 

  27. E. Korznikova, E. Schafler, G. Steiner, and M. J. Zehetbauer, “Measurements of vacancy type defects in SPD deformed Ni,” in 4th Int. Symp. on Ultrafine Grained Materials 2006 Annual Meeting, Ed. by Y. T. Zhu, T. G. Langdon, Z. Horita, M. J. Zehetbauer, S. L. et al. (Minerals, Metals & Materials Society, Warrendale, PA, 2006), pp. 97–102.

  28. A. R. Kilmametov, G. Vaughan, A. R. Yavari, A. Le Moule, W. J. Botta, and R. Z. Valiev, “Microstructure evolution in copper under severe plastic deformation detected by in situ X-ray diffraction using monochromatic synchrotron light,” Mater. Sci. Eng., A 503, 10–13 (2009).

    Article  Google Scholar 

  29. V. A. Shabashov, K. A. Kozlov, K. A. Lyashkov, A. E. Zamatovskii, and S. G. Titova, “Deformation-intensified atomic separation in bcc Fe–Mn alloys,” Phys. Met. Metallogr. 117, 1206–1218 (2016).

    Article  Google Scholar 

  30. A. A. Mazilkin, B. B. Straumal, S. G. Protasova, O. A. Kogtenkova, and R. Z. Valiev, “ Structural changes in aluminum alloys upon severe plastic deformation,” Phys. Solid State 49, 868–873 (2007).

    Article  Google Scholar 

  31. B. B. Straumal, S. G. Protasova, A. A. Mazilkin, E. Rabkin, D. Goll, G. Schutz, B. Baretzky, and R. Z. Valiev, “Deformation-driven formation of equilibrium phases in the Cu–Ni alloys,” J. Mater. Sci. 47, 360–367 (2012).

    Article  Google Scholar 

  32. V. V. Popov and A. V. Sergeev, “Structure of nickel–copper alloys subjected to high-pressure torsion to saturation stage,” Phys. Met. Metallogr. 118, 1073–1080 (2017).

    Article  Google Scholar 

  33. V. V. Popov, A. V. Sergeev, and A. V. Stolbovskii, “Emission Mössbauer spectroscopy of grain boundaries in ultrafine-grained W and Mo produced by severe plastic deformation,” Phys. Met. Metallogr. 118, 354–361 (2017).

    Article  Google Scholar 

  34. A. Ye. Yermakov, V. L. Gapontzev, V. V. Kondratyev, Yu. N. Gornostyrev, M. A. Uimin, and A. Yu. Koro-beinikov, “Phase instability of nanocrystalline driven alloys,” Mater. Sci. Forum 343–346, 577–584 (2000).

    Article  Google Scholar 

  35. P. Bellon and R. Averback, “Nonequilibrium roughening of interface in crystal under shear: Application to ball milling,” Phys. Rev. Lett. 74, 1819–1822 (1995).

    Article  Google Scholar 

  36. A. C. Lund and C. A. Schuh, “Molecular simulation of amorphization by mechanical alloying,” Acta Mater. 52, 2123–2132 (2004).

    Article  Google Scholar 

  37. S. Odunuga, Y. Li, P. Krasnochtchekov, P. Bellon, and R. S. Averback, “Forced chemical mixing in alloys driven by plastic deformation,” Phys. Rev. Lett. 95, 045901 (2005).

    Article  Google Scholar 

  38. G. Martin, “Phase stability under irradiation: Ballistic effects,” Phys. Rev. B 30, 1424–1436 (1984).

    Article  Google Scholar 

  39. P. Bellon and G. Martin, “Cascade effects in a nonequilibrium phase transition with metallurgical relevance,” Phys. Rev. B 39, 2403–2410 (1989).

    Article  Google Scholar 

  40. V. V. Rybin, Large Plastic Deformation and Fracture of Metals (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  41. M. Yu. Gutkin and I. A. Ovid’ko, Defects and Mechanisms of Plasticity in Nanostructured and Non-Crystalline Materials (Yanus, St. Petersburg, 2001) [in Russian].

    Google Scholar 

  42. Yu. A. Skakov, “The formation sequence of intermediate phases in mechanical alloying binary systems,” Mater. Sci. Forum 343–346, 597–602 (2000).

    Article  Google Scholar 

  43. B. Ya. Lyubov and V. A. Shmakov, “The theory of diffusion interaction of edge dislocations with new-phase precipitates,” Fiz. Met. Metalloved. 29, 968–979 (1970).

    Google Scholar 

  44. I. Prigogine, Introduction to the Thermodynamics of Irreversible Processes (Wiley, New York, 1955; Mir, Moscow, 1960; NITs “Regulyarnaya i Khaoticheskaya Dinamika”, Izhevsk, 2001).

  45. G. Nicolis and I. Prigogine, Self Organization in Nonequilibrium Systems (John Wiley, New York, 1977).

    Google Scholar 

  46. A. M. Glezer and M. S. Metlov, “Physics of megaplastic (severe) deformation in solids,” Phys. Solid State 52, 1162–1169 (2010).

    Article  Google Scholar 

  47. V. V. Rybin, N. Yu. Zolotorevskii, and I. M. Zhukovskii, “Evolution of structure and internal stresses at the stage of developed plastic deformation of crystalline bodies,” Fiz. Met. Metalloved. 69 (1), 5–26 (1990).

    Google Scholar 

  48. V. V. Rybin, V. N. Perevezentsev, and Yu. V. Svirina, “A physical model for the initial stages of the fragmentation of polycrystals in the process of developed plastic deformation,” Phys. Met. Metallogr. 118, 1171–1175 (2017).

    Article  Google Scholar 

  49. G. F. Sarafanov and V. N. Perevezentsev, “A model of accommodation of broken subboundaries on grain boundaries,” Tech. Phys. Lett., 400–403 (2007).

  50. S. O. Rogachev, A. B. Rozhnov, S. A. Nikulin, O. V. Rybal’chenko, M. V. Gorshenkov, V. G. Chzhen, and S. V. Dobatkin, “Effect of torsion conditions under high pressure on the structure and strengthening of the Zr–1% Nb alloy,” Phys. Met. Metallogr. 117, 371–377 (2016).

    Article  Google Scholar 

  51. I. A. Ovidko and A. G. Sheinerman, “Irradiation-induced amorphization processes in nanocrystalline solids,” Appl. Phys. A 81, 1083–1088 (2005).

    Article  Google Scholar 

  52. X. Quelennec, A. Menand, J. M. Breton, R. Pippan, and X. Sauvage, “Homogeneous Cu–Fe super satured solid solutions prepared by severe plastic deformation,” Philos. Mag. 90, 1179–1195 (2010).

    Article  Google Scholar 

  53. L. E. Popov and E. V. Kozlov, Mechanical Properties of Ordered Solutions (Metallurgiya, Moscow, 1970).

    Google Scholar 

  54. C. C. Koch, “Top-down synthesis of nanostructured materials. mechanical and thermal processing methods,” Rev. Adv. Mater. Sci. 5, 91–99 (2003).

    Google Scholar 

  55. R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Obtained by Severe Plastic Deformation (Logos, Moscow, 2000) [in Russian].

    Google Scholar 

  56. A. V. Korolev, E. G. Gerasimov, V. A. Kazantsev, A. I. Deryagin, V. A. Zavalishin, and E. I. Teitel’, “Magnetic phase transition in plastically deformed Ni–Cu alloys,” Fiz. Met. Metalloved. 79, 136–141 (1995).

    Google Scholar 

  57. A. I. Deryagin, V. A. Zavalishin, V. V. Sagaradze, A. R. Kuznetsov, V. A. Ivchenko, N. F. Vil’danova, and B. M. Efros, “Effect of composition and temperature on the redistribution of alloying elements in Fe–Cr–Ni alloys during cold deformation,” Phys. Met. Metallogr. 106, 291–301 (2008).

    Article  Google Scholar 

  58. V. A. Shabashov, V. V. Sagaradze, A. E. Zamatovskii, V. P. Pilyugin, K. A. Kozlov, A. V. Litvinov, and N. V. Kataeva, “Dynamic aging in an Fe–Ni–Al alloy upon megaplastic deformation. Effect of the temperature and deformation rate,” Phys. Met. Metallogr. 117, 805–816 (2016).

    Article  Google Scholar 

  59. V. A. Volkov, A. A. Chulkina, I. A. El’kin, and E. P. Elsukov, “Formation of carbide phases upon the mechanosynthesis of the (Fe0.93Cr0.07)75C25 alloy compared with other carbide-forming processes,” Phys. Met. Metallogr. 117, 178–187 (2016).

    Article  Google Scholar 

  60. V. A. Barinov, V. A. Tsurin, E. P. Elsukov, L. V. Ovechkin, G. A. Dorofeev, and A. E. Ermakov, “Mechanical alloying of Fe and B powders,” Phys. Met. Metallogr., 412–415 (1992).

  61. V. A. Tsurin and V. A. Barinov, “Phase instability and nonlinear effects in a mechanically synthesized nanocrystalline FeB alloy,” Pis’ma Zh. Tekh. Fiz. 24, 35–40 (1998).

    Google Scholar 

  62. H. Gleiter, “Die formanderung von ausscheidungen durch diffusion im spannungsfeld von versetzungen,“ Acta Metall. 16, 455–464 (1968).

    Article  Google Scholar 

  63. V. A. Shabashov, V. V. Sagaradze, S. V. Morozov, and G. A. Volkov, “Mossbauer study of the kinetics of the deformation dissolution of intermetallic compounds in austenite Fe–Ni–Ti,” Metallofizika 12, 107–114 (1990)

    Google Scholar 

  64. J. T. McGrath and W. J. Bratina, “Interaction of dislocations and precipitations in quench-aged iron–carbon alloys subjected to cyclic stressing,” Acta Metall. 15, 329–339 (1967).

    Article  Google Scholar 

  65. A. V. Shangurov, M. A. Uimin, A. E. Ermakov, and E. I. Teitel’, “Dynamic recrystallization, superplasticity and magnetic properties of the alloy MnAl–C,” Fiz. Met. Metalloved. 61, 884–892 (1986).

    Google Scholar 

  66. E. I. Teitel’, M. A. Uimin, A. E. Ermakov, A. V. Shangurov, V. A. Barinov, G. M. Makarova, R. I. Kuznetsov, V. P. Pilyugin, and V. M. Gundyrev, “Effect of large deformations on the structure and magnetic properties of the alloy MnAl–C,” Fiz. Met. Metalloved., No. 7, 95–104 (1990).

  67. E. I. Teitel’, M. A. Uimin, A. E. Ermakov, A. V. Shangurov, G. M. Makarova, V. A. Barinov, V. P. Pilyugin, R. I. Kuznetsov, “Change in the structural state and magnetic properties during annealing of a highly deformed alloy MnAl–C,” Fiz. Met. Metalloved., No. 8, 83–89 (1990).

Download references

6. ACKNOWLEDGMENTS

This work was performed within a state assignment on the subjects “Magnet” (no. AAAA-A18-118020290129-5) and “Structure” (no. AAAA-A18-118020190116-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Razumov.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razumov, I.K., Gornostyrev, Y.N. & Ermakov, A.E. Scenarios of Nonequilibrium Phase Transformations in Alloys Depending on the Temperature and Intensity of Plastic Deformation. Phys. Metals Metallogr. 119, 1133–1140 (2018). https://doi.org/10.1134/S0031918X18120177

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X18120177

Keywords:

Navigation