Skip to main content
Log in

Phase Composition, Structure, and Hardening of Alloys Containing 6% (Ca + Si) in the System Al–Ca–Si–Zr–Sc

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Thermo-Calc calculations and experimental methods (optical and electron scanning microscopy, and electron microprobe analysis) were used to study the phase composition of alloys of the Al–Ca–Si–Sc–Zr system with the same scandium and zirconium contents (0.1 and 0.25 wt %, respectively) and the same total silicon and calcium content (6 wt %). It was shown that the hardening due to the precipitation of nanoparticles of the phase Al3(Zr, Sc)–L12 reaches a maximum after annealing at 300–450°C in alloys within the phase region (Al) + Al4Ca + Al2Si2Ca, where (Al) stands for a solid solution based on aluminum. In alloys within this region, almost all of the zirconium and scandium are contained in (Al), and the silicon content of the alloys is minimum. However, Zr and Sc additions have almost no effect on hardening in alloys within the (Al) + (Si) + Al2Si2Ca phase region. The aluminum–calcium eutectic has an essentially finer structure than that of aluminum–silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. J. G. Kaufman and E. L. Rooy, Aluminum Alloy Castings: Properties, Processes, and Applications (ASM International, Ohio, 2004).

    Google Scholar 

  2. V. S. Zolotorevskiy, N. A. Belov, and M. V. Glazoff, Casting Aluminum Alloys (Elsevier, Amsderdam, 2007).

  3. N. A. Belov, S. V. Savchenko, and A. V. Khvan, Phase Composition and Structure of Silumines (MISIS, Moscow, 2008).

    Google Scholar 

  4. L. S. Toropova, D. G. Eskin, M. L. Kharakterova, and T. V. Dobatkina, Advanced Aluminum Alloys Containing Scandium: Structure and Properties (Gordon and Breach, Amsterdam, 1998).

    Google Scholar 

  5. J. Røyset and N. Ryum, “Scandium in aluminum alloys,” Int. Mater. Rev. 50, 19–44 (2005).

    Article  Google Scholar 

  6. Yu. A. Filatov, “Deformable Al–Mg–Sc alloys and possible regions of their application,” J. Adv. Mater. 5, 386–390 (1995).

    Google Scholar 

  7. Yu. A. Filatov, V. I. Yelagin, and V. V. Zakharov, “New Al–Mg–Sc alloys. II,” Mater. Sci. Eng., A 280, 97–101 (2000).

    Article  Google Scholar 

  8. E. A. Marquis and D. N. Seidman, “Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys,” Acta Mater., 49, 1909–1919 (2001).

    Article  Google Scholar 

  9. S. Costa, H. Puga, J. Barbosa, and A. M. P. Pinto, “The effect of Sc additions on the microstructure and age hardening behavior of as cast Al–Sc alloys,” Mater. Des., 42, 347–352 (2012).

    Article  Google Scholar 

  10. K. E. Knipling, R. A. Karnesky, C. P. Lee, D. C. Dunand, and D. N. Seidman, “Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at %) alloys during isochronal ageing,” Acta Mater. 58, 5184–5195 (2010).

    Article  Google Scholar 

  11. C. B. Fuller and D. N. Seidman, “Temporal evolution of the nanostructure of Al(Sc, Zr) alloys: Part II—Coarsening of Al3(Sc1 − xZrx) precipitates,” Acta Mater. 53, 5415–5428 (2005).

    Article  Google Scholar 

  12. E. Clouet, A. Barbu, L. Lae, and G. Martin, “Precipitation kinetics of Al3Zr and Al3Sc in aluminum alloys modeled with cluster dynamics,” Acta Mater. 53, 2313–2325 (2005).

    Article  Google Scholar 

  13. A. Deschamp and P. Guyo, “In situ small-angle scattering study of the precipitation kinetics in an Al–Zr–Sc alloy,” Acta Mater. 55, 2775–2783 (2007).

    Article  Google Scholar 

  14. W. Lefebvre, F. Danoix, H. Hallem, B. Forbord, A. Bostel, and K. Marthinsen, “Precipitation kinetic of Al3(Sc, Zr) dispersoids in aluminium,” J. Alloys Compd. 470, 107–110 (2009).

    Article  Google Scholar 

  15. B. Forbord, W. Lefebvre, F. Danoix, H. Hallem, and K. Marthinsen, “Three dimensional atom probe investigation on the formation of Al3(Sc, Zr)-dispersoids in aluminium alloys,” Scr. Mater. 51, 333–337 (2004).

    Article  Google Scholar 

  16. W. W. Zhou, B. Cai, W. J. Li, Z. X. Liu, and S. Yang, “Heat-resistant Al–0.2Sc–0.04Zr electrical conductor,” Mater. Sci. Eng., A 552, 353–358 (2012).

    Article  Google Scholar 

  17. C. Booth-Morrison, Z. Mao, M. Diaz, C. Dunand, D. C. Wolverton, and D. N. Seidman, “Role of silicon in accelerating the nucleation of Al3(Sc, Zr) precipitates in dilute Al–Sc–Zr alloys,” Acta Mater. 60, 4740–4752 (2012).

    Article  Google Scholar 

  18. N. A. Belov, A. N. Alabin, D. G. Eskin, and V. V. Istomin-Kastrovskiy, “Optimization of hardening of Al–Zr–Sc casting alloys,” J. Mater. Sci. 41, 5890–5899 (2006).

    Article  Google Scholar 

  19. N. A. Belov, E. A. Naumova, A. N. Alabin, and I. A. Matveeva, “Effect of scandium on structure and hardening of Al–Ca eutectic alloys,” J. Alloys Compd. 646, 741–747 (2015).

    Article  Google Scholar 

  20. N. A. Belov, E. A. Naumova, T. A. Bazlova, and E. V. Alekseeva, “Structure, phase composition, and strengthening of cast Al–Ca–Mg–Sc alloys,” Phys. Met. Metallogr. 117, 188–194 (2016).

    Article  Google Scholar 

  21. N. A. Belov, E. A. Naumova, and T. K. Akopyan, Eutectic Alloys Based on Aluminum: New Systems of Alloying (Ruda i Metally, Moscow, 2016) [in Russian].

    Google Scholar 

  22. L. F. Mondolfo, Aluminium Alloys: Structure and Properties (Butterworths, London, 1976).

    Google Scholar 

  23. N. A. Belov, E. A. Naumova, and T. K. Akopyan, “Effect of 0.3 wt% Sc on structure, phase composition and hardening of Al–Ca–Si eutectic alloys,” Trans. Nonferrous Met. Soc. China 4, 741–746 (2017).

    Article  Google Scholar 

  24. Reference data for thermodynamic calculations. http://www.thermocalc.com. Cited September 20, 2017.

  25. T. H. Ludwig, E. Dashlen, P. L. Schaffer, and L. Arnberg, “The effect of Ca and P interaction on the Al−Si eutectic in a hypoeutectic Al–Si alloy,” J. Alloys Compd. 586, 180–190 (2014).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation (project no. 14-19-00632P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Belov.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belov, N.A., Naumova, E.A., Doroshenko, V.V. et al. Phase Composition, Structure, and Hardening of Alloys Containing 6% (Ca + Si) in the System Al–Ca–Si–Zr–Sc. Phys. Metals Metallogr. 119, 1184–1190 (2018). https://doi.org/10.1134/S0031918X18120037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X18120037

Keywords:

Navigation