Skip to main content
Log in

Radiation Defects in Aluminum: MD Simulations of Collision Cascades in the Bulk of Material

  • THEORY OF METALS
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The molecular dynamics method has been used to simulate displacement cascades created by primary knock-on atoms (PKAs) with energies EPKA= 5, 10, 15, and 20 keV in aluminum at temperatures T = 100, 300, and 600 K. A series of 24 cascades was simulated for each pair of the parameters (EPKA, T) to ensure a representative sampling. The number of Frenkel pairs, the fraction of vacancies (εvac) and self-interstitial atoms (SIA) (εSIA) in point defect clusters, the average yield of vacancy (Yvac) and SIA (YSIA) clusters per cascade, and the average relaxation time τc have been determined as a function of (EPKA, T). It has been shown that displacement cascades of in aluminum decompose into several sub-cascades along PKA trajectory. Such a spatial structure of cascades is responsible for the absence of the dependence of the values of 〈εvac〉, 〈εSIA〉, 〈Nvac〉, 〈NSIA〉, and τc on the energy of PKAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. R. E. Voskoboinikov, “Radiation Defects in Aluminum. Simulation of primary damage in surface collision cascades,” Phys. Met. Metallogr. 120, 9–15 (2019).

    Google Scholar 

  2. R. R. Zope and Y. Mishin, “Interatomic potentials for atomistic simulations of the Ti–Al system,” Phys. Rev. B 68, 024102 (2003).

    Article  Google Scholar 

  3. J. P. Biersack and J. F. Ziegler, “Refined universal potentials in atomic collisions,” Nucl. Instrum. Methods 194, 93–100 (1982).

    Article  Google Scholar 

  4. K. Gärtner, D. Stock, B. Weber, G. Betz, M. Hautala, G. Hobler, M. Hou, S. Sarite, W. Eckstein, J. J. Jiménez-Rodríguez, A. M. C. Pérez-Martín, E. P. Andribet, V. Konoplev, A. Gras-Marti, M. Posselt, M. H. Shapiro, T. A. Tombrello, H. M. Urbassek, H. Hensel, Y. Yamamura, and W. Takeuchi, “Round robin computer simulation of ion transmission through crystalline layers,” Nucl. Instrum. Methods Phys. Res., Sect. B 102, 183–197 (1995).

    Google Scholar 

  5. H. I. Dawson, G. W. Iseler, A. S. Mehner, and J. W. Kauffman, “Determination of stage I recovery in pure aluminum following electron irradiation,” Phys. Lett. 18, 247–248 (1965).

    Article  Google Scholar 

  6. G. W. Iseler, H. I. Dawson, A. S. Mehner, and J. W. Kauffman, “Production rates of electrical resistivity in copper and aluminum induced by electron irradiation,” Phys. Rev. 146, 468–471 (1966).

    Article  Google Scholar 

  7. L. D. Landau and E. M. Lifshits, Theoretical Physics, in 10 Vols., Vol. I. Mechanics (Nauka, Moscow, 1957-1988; Pergamon, Oxford–London–Paris, 1960–1981).

  8. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).

    Google Scholar 

  9. L. A. Marques, J. E. Rubio, M. Jaraiz, L. Enriquez, and J. Barbolla, “An improved molecular dynamics scheme for ion bombardment simulations,” Nucl. Instrum. Methods Phys. Res., Sect. B 102, 7–11 (1995).

    Google Scholar 

  10. R. E. Voskoboinikov, Yu. N. Osetsky, and D. J. Bacon, “Computer simulation of primary damage creation in displacement cascades in copper. I. Defect creation and cluster statistics,” J. Nucl. Mater. 377, 385–395 (2008).

    Article  Google Scholar 

  11. R. E. Voskoboinikov, Yu. N. Osetsky, and D. J. Bacon, “Atomic-scale simulation of defect cluster formation in high-energy displacement cascades in zirconium,” ASTM STP 1475, 299–314 (2006).

    Google Scholar 

  12. R. E. Voskoboinikov, “MD simulations of collision cascades in the vicinity of a screw dislocation in aluminium,” Nucl. Instrum. Methods Phys. Res., Sect. B 303, 104–107 (2013).

    Google Scholar 

  13. R. E. Voskoboinikov, “Interaction of collision cascades with an isolated edge dislocation in aluminium,” Nucl. Instrum. Methods Phys. Res., Sect. B 303, 125–128 (2013).

    Google Scholar 

  14. F. A. Lindemann, “The calculation of molecular vibration frequencies,” Z. Phys. 11, 609–612 (1910).

    Google Scholar 

  15. K. Nordlund and R. S. Averback, “Point defect movement and annealing in collision cascades,” Phys. Rev. B 56, 2421–2431 (1997).

    Article  Google Scholar 

  16. 20 keV collision cascade in aluminum at T = 100 K. http://youtu.be/9DmsxklFGc4.

  17. 20 keV collision cascade in aluminum at T = 300 K. http://youtu.be/VfUytyxjRfg.

  18. 20 keV collision cascade in aluminum at T = 600 K. http://youtu.be/_a4VfQz72oQ.

  19. M. L. Swanson, L. M. Howe, J. A. Moore, and A. F. Quenneville, “Defect complexes in ion-irradiated aluminum,” Nucl. Instrum. Methods Phys. Res., Sect. B 209/210, 1029–1034 (1983).

    Google Scholar 

  20. P. Ehrhart and W. Schilling, “Investigation of interstitials in electron-irradiated aluminum by diffuse-X-ray scattering experiments,” Phys. Rev. B 8, 2604–2621 (1973).

    Article  Google Scholar 

  21. R. Qiu, H. Lu, B. Ao, L. Huang, T. Tang, and P. Chen, “Energetics of intrinsic point defects in aluminium via orbital-free density functional theory,” Philos. Mag. A 97, 2164–2181 (2017).

    Article  Google Scholar 

  22. D. J. Mazey, R. S. Barnes, and A. Howie, “On interstitial dislocation loops in aluminium bombarded with alpha-particles,” Philos. Mag. 7, 1861–1870 (1962).

    Article  Google Scholar 

  23. J. Howe and M. Sarikaya, “Observation of radiation-induced defect formation in aluminum by high-resolution transmission electron microscopy,” Mater. Res. Soc. Symp. Proc. 138, 41–45 (1988).

    Article  Google Scholar 

  24. M. Kiritani, N. Yoshida, and H. Takata, “Interstitial clusters in electron irradiated aluminum,” J. Phys. Soc. Jpn. 36, 720–729 (1974).

    Article  Google Scholar 

  25. A. Seeger, On the theory of radiation damage and radiation hardening, Proceedings of the 2nd United Nations International Conference on Peaceful Uses of Atomic Energy, Geneva, 6, 250–273 (1958).

  26. J. S. Williams and J. Wong-Leung, Voids and Nanocavities in Silicon, Ed. by H. Bernas, in: Materials Science with Ion Beams, Topics Appl. Physics Vol. 116 (Springer-Verlag, Berlin, 2010), pp. 113–146.

    Google Scholar 

  27. J. Yu, Interstitial dislocation loop nucleation and growth and swelling produced by high-energy cascades, ASTM STP 955, 393–413 (1987).

    Google Scholar 

  28. V. Gavini, K. Bhattacharya, and M. Ortiz, “Vacancy clustering and prismatic dislocation loop formation in aluminum,” Phys. Rev. B 76, 180101(R) (2007).

  29. I. G. Aramanovich and V. I. Levin, Equations of Mathematical Physics (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The research was supported by NRC Kurchatov Institute, project no. 1600. Simulation software, numerical methods and point defect identification and visualization techniques were developed under partial support from the Russian Foundation for Basic Research, grant RFBR no. 17-03-01222a. Molecular-dynamics simulations were carried out using HPC resources of the Federal Center for Simulation and Data Processing for Mega-Science facilities at NRC Kurchatov Institute (ministry subvention under agreement RFMEFI62117X00166), http://ckp.nrcki.ru/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Voskoboinikov.

Additional information

Translated by S. Gorin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voskoboinikov, R.E. Radiation Defects in Aluminum: MD Simulations of Collision Cascades in the Bulk of Material. Phys. Metals Metallogr. 120, 1–8 (2019). https://doi.org/10.1134/S0031918X18110212

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X18110212

Keywords:

Navigation