Structural Aspect of Isothermal Bainitic Transformation in High-Carbon Manganese–Silicon Steel


Transmission and scanning electron microscopy and X-ray diffraction analysis were used to compare the structural states of high-carbon manganese–silicon steel which underwent low-temperature isothermal bainitic and martensitic transformations. It was shown that bainite consisting of thin α-phase plates and residual austenite interlayers forms during isothermal holding at 300°С. As the isothermal holding time increases, fine carbide particles precipitate within the bainite α-phase.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1

    G. Kurdyumov, L. M. Utevskii, and R. I. Entin, Transformations in Iron and Steel (Nauka, Moscow, 1977) [in Russian]

    Google Scholar 

  2. 2

    Yu. N. Simonov, M. Yu. Simonov, D. O. Panov, V, Vylezhnev, and A. Yu. Kaletin, “Formation of the structure of the lower carbide-free bainite due to isothermal treatment of steels of type Kh3G3MFS and KhN3MFS,” Metalloved. Term. Obrab. Met., No. 2, 4–13 (2016).

  3. 3

    C. Garcia-Mateo, T. Sourmail, F. G. Caballero, V. Smanio, M. Kuntz, and C. Ziegler, “Nanostructured steel industrialisation: Plausible reality,” Mater. Sci. Technol. 30, 1071–1078 (2014).

    Article  Google Scholar 

  4. 4

    T. Sourmail and V. Smanio, “Low temperature kinetics of bainite formation in high carbon steels,” Acta Mater. 61, 2639–2648 (2013).

    Article  Google Scholar 

  5. 5

    V. M. Schastlivtsev, Yu. V. Kaletina, and E. A. Fokina, Retained Austenite in Alloy Steels (RIO UrO RAN, Ekaterinburg, 2014) [in Russian].

    Google Scholar 

  6. 6

    H. K. D. H. Bhadeshia, “Carbon in cubic and tetragonal ferrite,” Philos. Mag. 93, 3714–3725 (2013).

    Article  Google Scholar 

  7. 7

    H. K. D. H. Bhadeshia, Bainite in steels: Theory and practice (Maney Publishing, Leeds, UK, 2015).

    Google Scholar 

  8. 8

    N. N. Kachalov and L. I. Mirkin, X-ray Diffraction: A Practical Guide (Mashgiz, Moscow, 1960) [in Russian].

    Google Scholar 

  9. 9

    N. A. Tereshchenko, I. L. Yakovleva, D. A. Mirzaev, and I. V. Buldashev, “Formation of carbide-free bainite in high-carbon silicon steel under isothermal conditions,” Tech. Phys. Lett. 43, 1095–1098 (2017).

    Article  Google Scholar 

  10. 10

    D. A. Mirzayev, A. A. Mirzoev, I. V. Buldashev and K. Yu. Okishev, “Thermodynamic analysis of the formation of tetragonal bainite in steels,” Phys. Met. Metallogr. 118, 517–523 (2017).

    Article  Google Scholar 

  11. 11

    I. K. Razumov, Yu. N. Gornostyrev and M. I. Katsnelson, “Towards the ab initio based theory of phase transformations in iron and steel,” Phys. Met. Metallogr. 118, 362–388 (2017).

    Article  Google Scholar 

  12. 12

    N. A. Tereshchenko, I. L. Yakovleva, D. A. Mirzaev, and I. V. Buldashev, “Features of the isothermal formation of carbide-free bainite in high-carbon manganese–silicon steel,” Phys. Met. Metallogr. 119, 369–375 (2018).

    Article  Google Scholar 

  13. 13

    L. M. Utevskii, Difraction Electron Microscopy in Metal Science (Metallurgiya, Moscow, 1973) [in Russian].

    Google Scholar 

  14. 14

    L. Yuan’, Ts. Lyu, H. Li, and B. Gayu, “Effect of austenitizing temperature on the bainitic transformation in high-carbon silicon steel,” Metalloved. Term. Obrab. Met., No. 3, 33–38 (2015).

  15. 15

    F. G. Caballero, M. K. Miller, C. Garsia-Mateo, J. Cornide, and M. J. Santofimia, “Temperature dependence of carbon supersaturation of ferrite in bainitic steels,” Scr. Mater. 67, 846–849 (2012).

    Article  Google Scholar 

  16. 16

    A. Yu. Kaletin and Yu. V. Kaletina, “Evolution of the structure and properties of silicon steels in the austenite–bainite phase transition,” Phys. Solid State 57, 59–61 (2015).

    Article  Google Scholar 

Download references


This work, namely, the problem definition and electron-microscopic studies were supported by the Russian Foundation for Basic Research (project no. 16-19-10252). X-ray diffraction analysis was performed in terms of state assignment of FASO of the Russian Federation (theme STRUKTURA, no. АААА-А18-118020190116-6.)

Author information



Corresponding author

Correspondence to N. A. Tereshchenko.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yakovleva, I.L., Tereshchenko, N.A., Mirzaev, D.A. et al. Structural Aspect of Isothermal Bainitic Transformation in High-Carbon Manganese–Silicon Steel. Phys. Metals Metallogr. 119, 956–961 (2018).

Download citation


  • high-carbon manganese–silicon steel
  • low-temperature bainitic transformation
  • structure
  • martensite
  • bainite
  • residual austenite
  • fine carbide particles