Physics of Metals and Metallography

, Volume 119, Issue 10, pp 956–961 | Cite as

Structural Aspect of Isothermal Bainitic Transformation in High-Carbon Manganese–Silicon Steel

  • I. L. Yakovleva
  • N. A. TereshchenkoEmail author
  • D. A. Mirzaev
  • I. V. Buldashev


Transmission and scanning electron microscopy and X-ray diffraction analysis were used to compare the structural states of high-carbon manganese–silicon steel which underwent low-temperature isothermal bainitic and martensitic transformations. It was shown that bainite consisting of thin α-phase plates and residual austenite interlayers forms during isothermal holding at 300°С. As the isothermal holding time increases, fine carbide particles precipitate within the bainite α-phase.


high-carbon manganese–silicon steel low-temperature bainitic transformation structure martensite bainite residual austenite fine carbide particles 



This work, namely, the problem definition and electron-microscopic studies were supported by the Russian Foundation for Basic Research (project no. 16-19-10252). X-ray diffraction analysis was performed in terms of state assignment of FASO of the Russian Federation (theme STRUKTURA, no. АААА-А18-118020190116-6.)


  1. 1.
    G. Kurdyumov, L. M. Utevskii, and R. I. Entin, Transformations in Iron and Steel (Nauka, Moscow, 1977) [in Russian]Google Scholar
  2. 2.
    Yu. N. Simonov, M. Yu. Simonov, D. O. Panov, V, Vylezhnev, and A. Yu. Kaletin, “Formation of the structure of the lower carbide-free bainite due to isothermal treatment of steels of type Kh3G3MFS and KhN3MFS,” Metalloved. Term. Obrab. Met., No. 2, 4–13 (2016).Google Scholar
  3. 3.
    C. Garcia-Mateo, T. Sourmail, F. G. Caballero, V. Smanio, M. Kuntz, and C. Ziegler, “Nanostructured steel industrialisation: Plausible reality,” Mater. Sci. Technol. 30, 1071–1078 (2014).CrossRefGoogle Scholar
  4. 4.
    T. Sourmail and V. Smanio, “Low temperature kinetics of bainite formation in high carbon steels,” Acta Mater. 61, 2639–2648 (2013).CrossRefGoogle Scholar
  5. 5.
    V. M. Schastlivtsev, Yu. V. Kaletina, and E. A. Fokina, Retained Austenite in Alloy Steels (RIO UrO RAN, Ekaterinburg, 2014) [in Russian].Google Scholar
  6. 6.
    H. K. D. H. Bhadeshia, “Carbon in cubic and tetragonal ferrite,” Philos. Mag. 93, 3714–3725 (2013).CrossRefGoogle Scholar
  7. 7.
    H. K. D. H. Bhadeshia, Bainite in steels: Theory and practice (Maney Publishing, Leeds, UK, 2015).Google Scholar
  8. 8.
    N. N. Kachalov and L. I. Mirkin, X-ray Diffraction: A Practical Guide (Mashgiz, Moscow, 1960) [in Russian].Google Scholar
  9. 9.
    N. A. Tereshchenko, I. L. Yakovleva, D. A. Mirzaev, and I. V. Buldashev, “Formation of carbide-free bainite in high-carbon silicon steel under isothermal conditions,” Tech. Phys. Lett. 43, 1095–1098 (2017).CrossRefGoogle Scholar
  10. 10.
    D. A. Mirzayev, A. A. Mirzoev, I. V. Buldashev and K. Yu. Okishev, “Thermodynamic analysis of the formation of tetragonal bainite in steels,” Phys. Met. Metallogr. 118, 517–523 (2017).CrossRefGoogle Scholar
  11. 11.
    I. K. Razumov, Yu. N. Gornostyrev and M. I. Katsnelson, “Towards the ab initio based theory of phase transformations in iron and steel,” Phys. Met. Metallogr. 118, 362–388 (2017).CrossRefGoogle Scholar
  12. 12.
    N. A. Tereshchenko, I. L. Yakovleva, D. A. Mirzaev, and I. V. Buldashev, “Features of the isothermal formation of carbide-free bainite in high-carbon manganese–silicon steel,” Phys. Met. Metallogr. 119, 369–375 (2018).CrossRefGoogle Scholar
  13. 13.
    L. M. Utevskii, Difraction Electron Microscopy in Metal Science (Metallurgiya, Moscow, 1973) [in Russian].Google Scholar
  14. 14.
    L. Yuan’, Ts. Lyu, H. Li, and B. Gayu, “Effect of austenitizing temperature on the bainitic transformation in high-carbon silicon steel,” Metalloved. Term. Obrab. Met., No. 3, 33–38 (2015).Google Scholar
  15. 15.
    F. G. Caballero, M. K. Miller, C. Garsia-Mateo, J. Cornide, and M. J. Santofimia, “Temperature dependence of carbon supersaturation of ferrite in bainitic steels,” Scr. Mater. 67, 846–849 (2012).CrossRefGoogle Scholar
  16. 16.
    A. Yu. Kaletin and Yu. V. Kaletina, “Evolution of the structure and properties of silicon steels in the austenite–bainite phase transition,” Phys. Solid State 57, 59–61 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. L. Yakovleva
    • 1
  • N. A. Tereshchenko
    • 1
    Email author
  • D. A. Mirzaev
    • 2
  • I. V. Buldashev
    • 2
  1. 1.Institute of Metal Physics, Ural Branch, Russian Academy of SciencesEkaterinburgRussia
  2. 2.South-Ural State University (National Research University)ChelyabinskRussia

Personalised recommendations