Skip to main content
Log in

Simulation of the Effect of Ultrasound on the Dislocation Structure of Deformed Polycrystals

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Computer simulation was used to study the relaxation of disordered systems of dislocations in the stress field of nonequilibrium grain boundaries upon ultrasonic treatment (UST). The effect of ultrasound is simulated by an oscillatory shear stress applied to the crystal. Edge dislocations in a model grain with three nonparallel slip systems located at an angle of 60° to each other were examined. The nonequilibrium state of grain boundaries is simulated with the aid of a quadrupole of wedge disclinations located at its junctions. This study showed that the UST caused a rearrangement of the dislocation structure and led to a reduction of internal stresses. The amplitude of ultrasound and the degree of the nonequilibrium state of grain boundaries (strength of the disclination quadrupole) significantly affect the relaxation of the dislocation structure. There are optimum values of the UST amplitude, at which a maximum reduction of the internal stresses is achieved. This study also investigated the dependence of the degree of relaxation of internal stresses on the amount of dislocations in the grain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. V. Kulemin, Ultrasound and Diffusion in Metals (Metallurgiya, Moscow, 1978) [in Russian].

    Google Scholar 

  2. V. P. Severdenko, V. V. Klubovich, and A. V. Stepanenko, Treatment of Metals by Pressure with Ultrasound (Nauka i tekhnika, Minsk, 1973) [in Russian].

  3. N. A. Tyapunina, E. K. Naimi, and G. M. Zinenkova, Effect of Ultrasound on Crystals with Defects (Izd-vo MGU, Moscow, 1999) [in Russian].

    Google Scholar 

  4. D. Niblett and D. Wilks, “Dislocation damping in metals,” Adv. Phys. 9 (33), 1–88 (1960).

    Article  Google Scholar 

  5. A. V. Mats, V. M. Netesov, V. I. Sokolenko, and K. V. Kovtun, “Relaxation defects in deformed hafnium under ultrasonication,” Vopr. At. Nauki Tekh. 4-2, 167–169 (2009).

  6. I. A. Gindin, O. I. Volchok, and I. M. Neklyudov, “Relaxation of internal stresses in siliceous iron under the action of ultrasonic vibrations,” Fiz. Tverd. Tela 17, 655–657 (1975).

    Google Scholar 

  7. A. A. Nazarov, A. A. Samigullina, R. R. Mulyukov, Y. V. Tsarenko, and V. V. Rubanik, “Changes in the microstructure and mechanical properties of nanomaterials under an ultrasonic wave effect,” J. Machin. Manufact. Reliab. 43, 153–159 (2014).

    Article  Google Scholar 

  8. A. A. Nazarova, R. R. Mulyukov, V. V. Rubanik, Y. V. Tsarenko, and A. A. Nazarov, “Effect of ultrasonic treatment on the structure and properties of ultrafine-grained nickel,” Phys. Met. Metallogr. 110, 574–581 (2010).

    Article  Google Scholar 

  9. A. A. Samigullina, A. A. Nazarov, R. R. Mulyukov, Y. V. Tsarenko, and V. V. Rubanik, “Effect of ultrasonic treatment on the strength and ductility of bulk nanostructured nickel processed by equal-channel angular pressing,” Rev. Adv. Mater. Sci. 39, 48–53 (2014).

    Google Scholar 

  10. G. V. Bushueva, G. M. Zinenkova, N. A. Tyapunina, V. T. Degtyarev, A. Y. Losev, and F. A. Plotnikov, “Self-organization of dislocations in an ultrasound field,” Crystallogr. Rep. 53, 474–479 (2008).

    Article  Google Scholar 

  11. O. V. Abramov, Effect of Power Ultrasound on Liquid and Solid Metals (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  12. A. I. Lotkov, A. A. Baturin, V. N. Grishkov, Zh. G. Kovalevskaya, and P. V. Kuznetsov, “Effect of ultrasonic plastic treatment on the surface structure and phase state of nickel titanium,” Tech. Phys. Lett. 31, 912–914 (2005).

    Article  Google Scholar 

  13. A. V. Panin, E. A. Mel’nikova, O. B. Perevalova, Yu. I. Pochivalov, M. V. Leont’eva-Smirnova, V. M. Chernov, and Yu. F. Ivanov, “Nanocrystalline structure formation in EK-181 steel surface layers on ultrasonic treatment,” Fiz. Mezomekh. 12, 83–93 (2009).

    Google Scholar 

  14. V. K. Astashev, V. L. Krupenin, V. N. Perevezentsev, L. V. Kolik, and N. A. Andrianov, “Properties of surface layers nanostructured by autoresonant ultrasonic turning,” J. Machin. Manufact. Reliab. 40, 463–466 (2011).

    Article  Google Scholar 

  15. I. G. Polotskii, V. F. Belostotskii, and O. N. Kashevskaya, “Effect of ultrasonication on hardness of nickel monocrystals,” Fizika i Khimiya Obr. Materialov 4, 152–155 (1971).

    Google Scholar 

  16. B. Bako and W. Hoffelner, “Cellular dislocation patterning during plastic deformation,” Phys. Rev. B 76, 214108 (2007).

    Article  Google Scholar 

  17. N. Ahmed and A. Hartmaier, “Mechanisms of grain boundary softening and strain-rate sensitivity in deformation of ultrafine-grained metals at high temperatures,” Acta Mater. 59, 4323–4334 (2011).

    Article  Google Scholar 

  18. S. S. Quek, Z. H. Chooi, Z. X. Wu, Y. W. Zhang, and D. J. Srolovitz, “The inverse Hall-Petch relation in nanocrystalline metals: a discrete dislocation dynamics analysis,” J. Mech. Phys. Solids 88, 252–266 (2016).

    Article  Google Scholar 

  19. S. M. Keralavarma and W. A. Curtin, “Strain hardening in 2D discrete dislocation dynamics simulations: a new '2.5D' algorithm,” J. Mech. Phys. Solids 95, 132–146 (2016).

    Article  Google Scholar 

  20. V. V. Rybin, V. N. Perevezentsev, and Y. V. Svirina, “Model of formation of broken dislocation boundaries at joint disclinations,” Tech. Phys. 61, 898–903 (2016).

    Article  Google Scholar 

  21. A. A. Nazarov and Sh. Kh. Khannanov, “Ultrasonic stimulation of the process of polygonization,” Fiz. Khim. Obrab. Mater. 4, 109–114 (1986).

    Google Scholar 

  22. V. T. Degtyarev, A. Yu. Losev, and F. A. Plotnikov, “Redistribution of disordered dislocation ensembles in an ultrasonic field,” Naukoemk. Tekhnol. 34, 5–7 (2005).

    Google Scholar 

  23. R. T. Murzaev, D. V. Bachurin, and A. A. Nazarov, “Relaxation of residual defect structure in deformed polycrystals under ultrasound action,” Phys. Met. Metallogr. 118, 621–629 (2017).

    Article  Google Scholar 

  24. D. V. Bachurin, R. T. Murzaev, J. A. Baimova, A. A. Samigullina, and K. A. Krylova, “Ultrasound influence on behavior of disordered dislocation systems in a crystal with non-equilibrium grain boundaries,” Lett. Mater. 6, 183–188 (2016).

    Article  Google Scholar 

  25. A. A. Mukhametgalina, A. A. Samigullina, S. N. Sergeyev, A. P. Zhilyaev, A. A. Nazarov, Y. R. Zagidullina, N. Y. Parkhimovich, V. V. Rubanik, and Y. V. Tsarenko, “Effect of ultrasonic treatment on the structure and microhardness of ultrafine grained nickel processed by high pressure torsion,” Lett. Mater. 7, 85–90 (2017).

    Article  Google Scholar 

  26. A. A. Samigullina, A. A. Mukhametgalina, S. N. Sergeyev, A. P. Zhilyaev, A. A. Nazarov, Y. R. Zagidullina, N. Y. Parkhimovich, V. V. Rubanik, and Y. V. Tsarenko, “Microstructure changes in ultrafine-grained nickel processed by high pressure torsion under ultrasonic treatment,” Ultrasonics 82, 313–321 (2018).

    Article  Google Scholar 

  27. V. V. Rybin, Large Plastic Deformations and Fracture of Metals (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  28. A. A. Nazarov, A. E. Romanov, and R. Z. Valiev, “Random disclination ensembles in ultrafine-grained materials produced by severe plastic deformation,” Scr. Mater. 34, 729–734 (1996).

    Article  Google Scholar 

  29. S. V. Dmitriev, A. I. Pshenichnyuk, A. M. Iskandarov, and A. A. Nazarova, “Resonant interaction of edge dislocations with running acoustic waves,” Modell. Simul. Mater. Sci. 18, 025102 (2010).

    Google Scholar 

  30. A. A. Nazarova, S. V. Dmitriev, A. I. Pshenichnyuk, and R. R. Mulyukov, “Resonance interaction of an edge-dislocation wall with a traveling sound wave,” Phys. Solid State. 52, 2490–2495 (2010).

    Article  Google Scholar 

  31. J. P. Hirth and J. Lothe, Theory of Dislocations (Wiley, New York, 1968, 1982; Atomizdat, Moscow, 1972).

  32. A. N. Orlov, Introduction to the Theory of Defects in Crystals (Vysshaya shkola, Moscow, 1983) [in Russian].

  33. R. T. Murzaev, D. V. Bachurin, and A. A. Nazarov, “Interaction of dislocation tripoles with a standing sound wave,” Phys. Met. Metallogr. 116, 1057–1065 (2015).

    Article  Google Scholar 

  34. R. T. Murzaev, D. V. Bachurin, and A. A. Nazarov, “Drift of dislocation tripoles under ultrasound influence,” Ultrasonics 64, 77–82 (2016).

    Article  Google Scholar 

  35. V. I. Vladimirov and A. E. Romanov, Disclinations in Crystals (Nauka, Leningrad, 1986) [in Russian].

    Google Scholar 

  36. W. M. Lomer, “A dislocation reaction in the face-centred cubic lattice,” Philos. Mag. 42, 1327–1331 (1951).

    Article  Google Scholar 

  37. A. H. Cottrell, “The formation of immobile dislocations during slip,” Philos. Mag. 43, 645–647 (1952).

    Article  Google Scholar 

  38. A. A. Mukhametgalina, A. A. Samigullina, S. N. Sergeev, A. P. Zhilyaev, A. A. Nazarov, Yu. R. Zagidullina, N. Yu. Parkhimovich, V. V. Rubanik, and Yu. V. Tsarenko, “Effect of ultrasonic treatment on the microstructure and microhardness of ultrafine-grained nickel obtained by high-pressure torsion,” Lett. Mater. 7, 85–90 (2017).

  39. A. A. Samigullina, R. Kh. Khisamov, and R. R. Mulyukov, “Structure relaxation of nickel, processed by high pressure torsion, with the ultrasonic treatment,” Lett. Mater. 2, 134–138 (2012).

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation (grant no. 16-19-10126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Bachurin.

Additional information

Translated by S. Gorin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murzaev, R.T., Bachurin, D.V. & Nazarov, A.A. Simulation of the Effect of Ultrasound on the Dislocation Structure of Deformed Polycrystals. Phys. Metals Metallogr. 119, 993–1003 (2018). https://doi.org/10.1134/S0031918X18100101

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X18100101

Keywords:

Navigation