Advertisement

Physics of Metals and Metallography

, Volume 119, Issue 10, pp 1004–1012 | Cite as

The Strength and Fracture Mechanism of Unalloyed Medium-Carbon Steel with Ultrafine-Grained Structure under Single Loads

  • G. V. Klevtsov
  • R. Z. Valiev
  • N. A. Klevtsova
  • I. N. Pigaleva
  • E. D. Merson
  • M. L. Linderov
  • A. V. Ganeev
STRENGTH AND PLASTICITY
  • 27 Downloads

Abstract

This work is devoted to the study of the tensile strength, static crack resistance (К1С), and impact toughness of unalloyed medium-carbon (0.45% C) steel with ultrafine-grained (UFG) structure obtained by equal-channel angular pressing (ECAP) in comparison with coarse-grained (CG) steel after quenching and high tempering. The ECAP was carried out in the following regime: austenitization for 1 hour at 800°C + quenching in water + medium tempering (350°C) + ECAP at 350°C (Bc route, n = 6, φ = 120°). Our work shows that the K1С of steel in the UFG state is 53 MPa m1/2 and, in the CG state, 69 MPa m1/2. The static failure of steel samples in the CG- and UFG states occurred under conditions of planar deformation. The relation between the depth of the plastic zone below the surface of the fractures in the region of crack propagation and the static crack resistance of steel in the CG- and UFG states is described by the equations hy = 1/12π(K1C0.2)2 and hy = 1/8π(K1C0.2)2. After ECAP, a narrowing of the ductile–brittle transition interval of steel and its shift towards low temperatures by 70–80°C can be observed. Moreover, the temperature dependence of the size of the shear lips at the surface of the fractures correlates with the temperature dependence of the impact toughness of the steel. The dominant fracture mechanism of CG steel in the lower and middle regions of the ductile–brittle transition is a cleavage, and that of UFG steels, a quasi-cleavage. In the upper region of the ductile–brittle transition, the steel under study fractures with the formation of a pit microrelief.

Keywords:

steel ultrafine-grained structure coarse-grained structure equal-channel angular pressing strength fracture mechanism static crack resistance impact toughness depth of plastic zone under the fracture surface planar deformation 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 14-08-00301.

REFERENCES

  1. 1.
    R. Z. Valiev, A. P. Zhilyaev, and T. G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications (John Wiley & Sons, Hoboken, New Jersey, 2014).Google Scholar
  2. 2.
    G. V. Klevtsov, E. V. Bobruk, I. P. Semenova, N. A. Klevtsova, and R. Z. Valiev, Strength and Mechanisms of Destruction of Bulk Nanostructured Metallic Materials (RIK UGATU, Ufa, 2016) [in Russian].Google Scholar
  3. 3.
    I. Sabirov, R. Z. Valiev, I. P. Semenova, and R. Pippan, “Effect of equal channel angular pressing on the fracture behavior of commercially pure titanium,” Metall. Mater. Trans. A 41, 727–733 (2010).CrossRefGoogle Scholar
  4. 4.
    L. R. Botvina, M. I. Alymov, M. R. Tyutin, T. B. Petersen, S. A. Tikhomirov, and N. A. Solov’ev, “Kinetics of nickel destruction with inhomogeneous nanostructure,” Rossiiskie Nanotekhnologii 2, 106–111 (2007).Google Scholar
  5. 5.
    A. Hohenwarter and R. Pippan, “Fracture toughness and fatigue crack propagation measurements in ultrafine grained iron and nickel,” in Plasticity, Failure and Fatigue in Structural Materials—From Macro to Nano: Proc. of the Hael Mughrabi Honorary Symposium, Ed. by K. Jimmy, Mathias Goken, Tresa Pollock, Pedro Dolabella Portella, and Neville R. Moody (TMS, Warrendale, 2008), pp.183–188.Google Scholar
  6. 6.
    W. Braun and J. Srawley, Plane Strain Crack Toughness Testing of High-Strength Metallic Materials (Saunders, Philadelphia, 1967).Google Scholar
  7. 7.
    R. Z. Valiev, G. V. Klevtsov, N. A. Klevtsova, M. V. Fesenyuk, M. R. Kashapov, A. G. Raab, M. V. Karavaeva, and A. V. Ganeev, “The effect of modes of equal-channel angular pressing and subsequent heating on the strength and mechanism of failure of steel 10,” Deform. Razrush. Mater., No. 1, 21–25 (2013).Google Scholar
  8. 8.
    N. Tsuji, R. Ueji, Y. Minamino, and Y. Saito, “A new and simple process to obtain nano-structured bulk low-carbon steel with superior mechanical property”, Scr. Mater. 46, 305–310 (2002).CrossRefGoogle Scholar
  9. 9.
    G. V. Klevtsov, L. R. Botvina, N. A. Klevtsova, and L. V. Limar’, Fractodiagnostics of the Destruction of Metallic Materials and Structures (MISiS, Moscow, 2007) [in Russian].Google Scholar
  10. 10.
    R 50-54-52/2-94. Calculations and Strength Tests. Method of X-ray Diffraction Analysis of Fractures. Determination of the Characteristics of the Destruction of Metallic Materials by the X-ray Diffraction Method (VNIINMASh Gosstandart. Rossii, Moscow, 1994) [in Russian].Google Scholar
  11. 11.
    R 50-54-52-88. Calculations and Strength Tests. Method of X-ray Diffraction Analysis of Fractures. Determination of the Depth of Zones of Plastic Deformation below the Surface of Failure (VNIINMASh Gosstandart. SSSR, Moscow, 1988) [in Russian].Google Scholar
  12. 12.
    L. R. Botvina, Kinetics of Destruction of Structural Materials (Nauka, Moscow, 1989) [in Russian].Google Scholar
  13. 13.
    E. G. Astafurova, G. G. Zakharova, E. V. Naydenkin, S. V. Dobatkin, and G. I. Raab, “Influence of equal-channel angular pressing on the structure and mechanical properties of low-carbon steel 10G2FT,” Phys. Met. Metallogr. 110, 260–268 (2010).CrossRefGoogle Scholar
  14. 14.
    S. V. Dobatkin, P. D. Odesskii, R. Pippan, G. I. Raab, and N. A. Krasil’nikov, “Warm and hot equal-channel angular pressing of low-carbon steels,” Russ. Metall. (Metally), 2004, 94–102 (2004).Google Scholar
  15. 15.
    N. V. Koptseva, Yu. Yu. Efimova, M. P. Baryshnikov, and O. A. Nikitenko, “Formation of the structure and mechanical properties of carbon structural steel in the process of nanostructuring by the method of equal-channel angular pressing,” Deform. Razrush. Mater., No. 7, 11–17 (2011).Google Scholar
  16. 16.
    S. V. Dobatkin, “Severe plastic deformation of steels: structure, properties and techniques,” in Investigations and Applications of Severe Plastic Deformation, Ed. by T. C. Lowe and R. Z. Valiev (Kluwer Academic, Dordrecht, 2000), pp. 13–22.Google Scholar
  17. 17.
    M. V. Karavaeva, S. K. Kiseleva, A. V. Ganeev, and R. Z. Valiev, “Superior strength of carbon steel with an ultrafine-grained microstructure and its enhanced thermal stability,” J. Mater. Sci. 50, 6730–6738 (2015). doi 10.1007/s10853-015-9227-2CrossRefGoogle Scholar
  18. 18.
    N. A. Tereshchenko, T. I. Tabatchikova, I. L. Yakovleva, A. N. Makovetskii, and S. V. Shander, “Influence of structure on static cracking resistance and fracture of welded joints of pipe steels of strength class K60,” Phys. Met. Metallogr. 118, 707–715 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • G. V. Klevtsov
    • 1
  • R. Z. Valiev
    • 2
  • N. A. Klevtsova
    • 1
  • I. N. Pigaleva
    • 1
  • E. D. Merson
    • 1
  • M. L. Linderov
    • 1
  • A. V. Ganeev
    • 2
  1. 1.Togliatti State UniversityTolyattiRussia
  2. 2.Scientific Research Institute of Physics of Perspective Materials, Ufa State Aviation Technical UniversityUfaRussia

Personalised recommendations