Advertisement

Physics of Metals and Metallography

, Volume 119, Issue 6, pp 523–529 | Cite as

Effect of Titanium Additions on the Thermophysical Properties of Glass-Forming Cu50Zr50 Alloy

  • V. A. Bykov
  • D. A. Yagodin
  • T. V. Kulikova
  • S. Kh. Estemirova
  • K. Yu. Shunyaev
Electrical and Magnetic Properties
  • 18 Downloads

Abstract

Differential scanning calorimetry, laser flash method, and dilatometry were used to study the thermophysical properties of quenched Cu50Zr50–xTix (x = 0, 2, 4, 6, 8) alloys in the temperature range from room temperature to 1100 K. Data obtained on the heat capacity, thermal diffusivity, and density have been used to calculate the coefficient of thermal conductivity. Temperatures corresponding to the stability of martensite CuZr phase, its eutectoid decomposition, and formation in Cu50Zr50–xTix alloys with different Ti contents upon heating have been determined. It has been found that the thermal diffusivity and thermal conductivity of the studied alloys are low and a typical of metallic systems. As the titanium content increases, the coefficients of thermal conductivity and thermal diffusivity vary slightly. It has been shown that the low values of thermophysical characteristics correspond to the better capability of amorphization and can be a criterion for the glass-forming ability of Cu–Zr-based alloys.

Keywords

Cu–Zr–Ti alloys thermal conductivity density thermal diffusivity phase transformations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. K. Song, P. Gargarella, S. Pauly, G. Z. Ma, U. Kühn, and Eckert J., “Correlation between glassforming ability, thermal stability, and crystallization kinetics of Cu–Zr–Ag metallic glasses,” J. Appl. Phys. 112, 063503 (2012).CrossRefGoogle Scholar
  2. 2.
    E. S. Park, H. J. Chang, and D. H. Kim, “Effect of addition of Be on glass-forming ability, plasticity and structural change in Cu–Zr bulk metallic glasses,” Acta Mater. 56, 3120–3131 (2008).CrossRefGoogle Scholar
  3. 3.
    Y. Zhang, J. Chen, G. L. Chen, and X. J. Liu, “Glass formation mechanism of minor yttrium addition in CuZrAl alloys,” Appl. Phys. Lett. 89, 131904 (2006).CrossRefGoogle Scholar
  4. 4.
    P. Yu, H. Y. Bai, M. B. Tang, and W. L. Wang, “Excellent glass-forming ability in simple Cu50Zr50-based alloys,” J. Non-Cryst. Solids. 351, 1328–1332 (2005).CrossRefGoogle Scholar
  5. 5.
    S. Pauly, J. Das, C. Duhamel, and J. Eckert, “Effect of titanium on microstructure and mechanical properties of Cu50Zr50–xTix (2.5 ≤ x ≤ 7.5) glass matrix composites,” Metall. Mater. Trans. A 39, 1868–1873 (2008).CrossRefGoogle Scholar
  6. 6.
    K. K. Song, S. Pauly, Y. Zhang, P. Gargarella, R. Li, N. S. Barekar, U. Kühn, M. Stoica, and J. Eckert, “Strategy for pinpointing the formation of B2 CuZr in metastable CuZr-based shape memory alloys,” Acta Mater. 59, 6620–6630 (2011).CrossRefGoogle Scholar
  7. 7.
    G. Effenberg and S. Ilyenko, “Cu–Ti–Zr (Copper–Titanium–Zirconium),” in Non-ferrous Metal Systems. Part 3 (Springer, Berlin–Heidelberg, 2007), pp. 436–464.Google Scholar
  8. 8.
    J. W. Seo and D. Schryvers, “TEM investigation of the microstructure and defects of CuZr martensite. Part I: Morphology and twin systems,” Acta Mater. 46, 1165–1175 (1998).CrossRefGoogle Scholar
  9. 9.
    D. Schryvers, G. S. Firstov, J. W. Seo, J. Van Humbeeck, and Y. N. Koval, “Unit cell determination in CuZr martensite by electron microscopy and X-ray diffraction,” Scr. Mater. 36, 1119–1125 (1997).CrossRefGoogle Scholar
  10. 10.
    S. Pauly, G. Liu, G. Wang, U. Kühn, N. Mattern, and J. Eckert, “Microstructural heterogeneities governing the deformation of Cu47.5Zr47.5Al5 bulk metallic glass composites,” Acta Mater. 57, 5445–5453 (2009).CrossRefGoogle Scholar
  11. 11.
    G. S. Firstov, J. Van Humbeeck, and Y. N. Koval, “Peculiarities of the martensitic transformation in ZrCu intermetallic compound - potential high temperature SMA,” J. Phys. IV 11, 481–486 (2001).Google Scholar
  12. 12.
    Y. N. Koval, G. S. Firstov, and A. V. Kotko, “Martensitic transformation and shape memory effect in ZrCu intermetallic compound,” Scr. Metall. Mater. 27, 1611–1616 (1992).CrossRefGoogle Scholar
  13. 13.
    F. A. Javid, N. Mattern, S. Pauly, and J. Eckert, “Martensitic transformation and thermal cycling effect in Cu–Co–Zr alloys,” J. Alloys Compd. 509, S334–S337 (2011).CrossRefGoogle Scholar
  14. 14.
    F. Qiu, P. Shen, C. Liu, and Q. C. Jiang, “Effects of Ni addition on the microstructure and compressive deformation behavior in Zr–Cu–Ni martensitic alloys,” Mater. Des. 34, 143–147 (2012).CrossRefGoogle Scholar
  15. 15.
    F. Q. Meng, K. Tsuchiya, F. X. Yin, S. Ii, and Y. Yokoyama, “Influence of Al content on martensitic transformation behavior in Zr50Cu50 − xAlx,” J. Alloys Compd. 522, 136–140 (2012).CrossRefGoogle Scholar
  16. 16.
    V. A. Bykov, T. V. Kulikova, D. A. Yagodin, V. V. Filippov, and K. Yu. Shunyaev, “Thermophysical and Electrical Properties of Equiatomic CuZr Alloy,” Phys. Met. Metallogr. 116, 1067–1072 (2015).CrossRefGoogle Scholar
  17. 17.
    S. Uporov, V. Bykov, and S. Estemirova, “Electrical and thermal conductivities of rapidly crystallized Cu‒Zr alloys: The effect of anharmonicity,” Phys. B 499, 97–106 (2016).CrossRefGoogle Scholar
  18. 18.
    H. Men, J. Fu, C. Ma, S. Pang, and T. Zhang, “Bulk glass formation in ternary Cu–Zr–Ti system,” J. Univ. Sci. Technol. Beijing 14, 19–22 (2007).CrossRefGoogle Scholar
  19. 19.
    K. Shinzato and T. A. Baba, “Laser flash apparatus for thermal diffusivity and specific heat capacity measurements,” J. Therm. Anal. Calorim. 64, 413–422 (2001).CrossRefGoogle Scholar
  20. 20.
    C. Dai, H. Guo, Y. Li, and J. Xu, “A new composition zone of bulk metallic glass formation in the Cu–Zr–Ti ternary system and its correlation with the eutectic reaction,” J. Non-Cryst. Solids 354, 3659–3665 (2008).CrossRefGoogle Scholar
  21. 21.
    S. Pauly, J. Das, J. Bednarcik, N. Mattern, K. B. Kim, D. H. Kim, and J. Eckert, “Deformation-induced martensitic transformation in Cu–Zr–(Al,Ti) bulk metallic glass composites,” Scr. Mater. 60, 431–434 (2009).CrossRefGoogle Scholar
  22. 22.
    K. K. Song, D. Y. Wu, S. Pauly, C. X. Peng, L. Wang, and J. Eckert, “Thermal stability of B2 CuZr phase, microstructural evolution and martensitic transformation in Cu–Zr–Ti alloys,” Intermetallics 67, 177–184 (2015).CrossRefGoogle Scholar
  23. 23.
    Y. K. Kuo, K. M. Sivakumar, C. A. Su, C. N. Ku, S. T. Lin, A. B. Kaiser, J. B. Qiang, Q. Wang, and C. Dong, “Measurement of low-temperature transport properties of Cu-based Cu–Zr–Ti bulk metallic glass,” Phys. Rev. B 74, 014208 (2006).CrossRefGoogle Scholar
  24. 24.
    V. A. Bykov, T. V. Kulikova, L. B. Vedmid’, A. Ya. Fishman, K. Yu. Shunyaev, and N. Yu. Tarenkova, “Thermophysical Properties of Ti–5Al–5V–5Mo–3Cr–1Zr Titanium Alloy,” Phys. Met. Metallogr. 115, 751–755 (2014).CrossRefGoogle Scholar
  25. 25.
    M. Hasegawa, H. Sato, T. Takeuchi, K. Soda, and U. Mizutani, “Electronic structure of Zr-based metallic glasses,” J. Alloys Compd. 483, 638–641 (2009).CrossRefGoogle Scholar
  26. 26.
    G. Ghosh, “First-principles calculations of structural energetics of Cu–TM (TM = Ti, Zr, Hf) intermetallics,” Acta Mater. 55, 3347–3374 (2007).CrossRefGoogle Scholar
  27. 27.
    K. Soda, K. Shimba, S. Yagi, M. Kato, T. Takeuchi, U. Mizutani, T. Zhang, M. Hasegawa, A. Inoue, T. Ito, and S. Kimura, “Electronic structure of bulk metallic glass ZrAlCuNi,” J. Electron. Spectrosc. Relat. Phenom. 144, 585–587 (2005).CrossRefGoogle Scholar
  28. 28.
    D. V. Louzguine-Luzgin, J. Antonowicz, K. Georgarakis, G. Vaughan, A. R. Yavari, and A. Inoue, “Realspace structural studies of Cu–Zr–Ti glassy alloy,” J. Alloys Compd. 466, 106–110 (2008).CrossRefGoogle Scholar
  29. 29.
    Z. D. Sha, H. Pan, Q. X. Pei, and Y. W. Zhang, “The nature of the atomic-level structure in the Cu–Zr binary metallic glasses,” Intermetallics 26, 8–10 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Bykov
    • 1
    • 2
  • D. A. Yagodin
    • 1
  • T. V. Kulikova
    • 1
  • S. Kh. Estemirova
    • 1
    • 2
  • K. Yu. Shunyaev
    • 1
    • 2
  1. 1.Institute of Metallurgy, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal University named after the first President of Russia B. N. YeltsinEkaterinburgRussia

Personalised recommendations