Molecular Dynamics Study of the Deformation Processes of Metallic Materials in Structural and Phase (Martensitic) Transformations

Abstract

The application of the method of molecular dynamics based on the use of pair interatomic potentials has been discussed to study various deformation processes during structural and phase (martensitic) transformations in metallic single and polycrystals. It has been shown that the method of molecular dynamics in a two-dimensional model makes it possible to qualitatively analyze the processes of grain-boundary sliding and other mechanisms of plastic deformation in polycrystals. It is also an efficient tool for describing diffusionless martensitic transformations in metallic materials. As an example, the use of the method for simulating grain-boundary sliding in a polycrystal with nonequilibrium grain boundaries is presented and the mechanisms of overcoming an obstruction in the form of a protruding segment of a grain have been demonstrated at the atomic level. The application of this method for describing the dynamics and morphology of the thermoelastic martensitic transformation has been illustrated by the example of the titanium nickelide and manganese alloys.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    V. V. Astanin, A. V. Sisanbaev, A. I. Pshenichnyuk, and O. A. Kaibyshev, “Self-organization of cooperative grain boundary sliding in aluminium tricrystals,” Scr. Metall. Mater. 36, 117–122 (1997).

    Article  Google Scholar 

  2. 2.

    N. I. Noskova and R. R. Mulyukov, Submicrocrystalline and Nanocrystalline Metals and Alloys (UrO RAN, Ekaterinburg, 2003).

    Google Scholar 

  3. 3.

    A. A. Nazarov and R. R. Mulyukov, “Nanostructured Materials.” in Handbook of Nanoscience, Engineering, and Technology, Ed. by W. Goddard, D. Brenner, S. Lyshevski, and G. Iafrate (CRC Press, Boca Raton, FL, 2003).

    Google Scholar 

  4. 4.

    R. R. Mulyukov, “Development of the principles of obtaining and investigating bulk nanostructured materials at the Institute for Metals Superplasticity Problems, Russian Academy of Sciences,” Ross. Nanotekhnol. 2, 38–53 (2007) [in Russian].

    Google Scholar 

  5. 5.

    J. A. Baimova, S. V. Dmitriev, A. A. Nazarov, and A. I. Pshenichnyuk, “Dynamics of edge dislocations in a two-dimensional crystal at finite temperatures,” Phys. Solid State 51, 1809–1813 (2009).

    Article  Google Scholar 

  6. 6.

    A. A. Nazarova, S. V. Dmitriev, Yu. A. Baimova, R. R. Mulyukov, and A. A. Nazarov, “Computer simulation of the effect of ultrasound and annealing on the structure of a two-dimensional severely deformed nanocrystalline material,” Phys. Met. Metallogr. 111, 513–519 (2011).

    Article  Google Scholar 

  7. 7.

    J. A. Baimova and S. V. Dmitriev, “High-energy mesoscale strips observed in two-dimensional atomistic modeling of plastic deformation of nano-polycrystal,” Comput. Mater. Sci. 50, 1414–1417 (2011).

    Article  Google Scholar 

  8. 8.

    Yu. A. Baimova, S. V. Dmitriev, and A. A. Nazarov, “Simulation of the effect of strengthening-phase particles on the plastic deformation of a two-dimensional polycrystal,” Phys. Met. Metallogr. 113, 302–311 (2012).

    Article  Google Scholar 

  9. 9.

    V. V. Astanin, Yu. A. Baimova, S. V. Dmitriev, and A. I. Pshenichnyuk, “Kinetics of overcoming obstructions in cooperative grain-boundary sliding in twodimensional crystals,” Phys. Met. Metallogr. 113, 907–913 (2012).

    Article  Google Scholar 

  10. 10.

    A. Yu. Kuksin and A. V. Yanilkin, “Atomistic simulation of the motion of dislocations in metals under phonon drag conditions,” Phys. Solid State 55, 1010–1019 (2013).

    Article  Google Scholar 

  11. 11.

    D. V. Bachurin and P. Gumbsch, “Atomistic simulation of the deformation of nanocrystalline palladium: the effect of voids,” Modell. Simul. Mater. Sci. Eng. 22, 025011 (2014).

    Article  Google Scholar 

  12. 12.

    R. I. Babicheva, J. A. Baimova, S. V. Dmitriev, and V. G. Pushin, “Two-dimensional model of the ordered alloy for the investigation of martensitic transformation,” J. Mater. Sci. Lett. 5, 359–363 (2015).

    Google Scholar 

  13. 13.

    R. T. Murzaev, D. V. Bachurin, and A. A. Nazarov, “Drift of dislocation tripoles under ultrasound influence,” Ultrasonics 64, 77–82 (2016).

    Article  Google Scholar 

  14. 14.

    R. Babicheva, K. Zhou, S. Dmitriev, Y. Zhang, and S. W. Kok, “Effect of grain boundary segregation on shear deformation of nanocrystalline binary aluminum alloys at room temperature,” Mater. Sci. Forum 838–839, 89–94 (2016).

    Article  Google Scholar 

  15. 15.

    A. A. Nazarov, “Molecular dynamics simulation of the effect of ultrasonic vibrations on the structure of nonequilibrium [112] tilt grain boundaries in nickel,” Rev. Adv. Mater. Sci. 47, 42–48 (2016).

    Google Scholar 

  16. 16.

    A. A. Nazarov, “Molecular dynamics simulation of the relaxation of a grain boundary disclination dipole under ultrasonic stresses,” Pis’ma Mater. 6, 179–182 (2016).

    Google Scholar 

  17. 17.

    J. A. Baimova, R. I. Babicheva, A. V. Lukyanov, V. G. Pushin, D. V. Gunderov, and S. V. Dmitriev, “Molecular dynamics for investigation of martensitic transformations,” Rev. Adv. Mater. Sci. 47, 86–94 (2016).

    Google Scholar 

  18. 18.

    G. E. Norman and V. V. Stegailov, “Stochastic theory of the method of classical molecular dynamics,” Matem. Modelir. 24, 3–44 (2012).

    Google Scholar 

  19. 19.

    X.-G. Liang and B. Shi, “Two-dimensional molecular dynamics simulation of the thermal conductance of superlattices,” Mater. Sci. Eng., A. 292, 198–202 (2000).

    Article  Google Scholar 

  20. 20.

    H.-J. Chang, J. Segurado, O. Rodrıguez de la Fuente, B. M. Pabon, and J. Lorca, “Molecular dynamics modeling and simulation of void growth in two dimensions,” Modell. Simul. Mater. Sci. Eng. 21, 075010 (2013).

    Article  Google Scholar 

  21. 21.

    G. M. Poletaev, M. D. Starostenkov, and Yu. V. Patsaeva, “Driving mechanisms of self-diffusion in two-dimensional metals,” Fundam. Probl. Sovrem. Materialoved. 1, 124–129 (2004).

    Google Scholar 

  22. 22.

    G. M. Poletaev and M. D. Starostenkov, “Dynamic collective displacements of atoms in metals and their role in the vacancy mechanism of diffusion,” Phys. Solid State 51, 727–732 (2009).

    Article  Google Scholar 

  23. 23.

    B. F. Dem’yanov, S. L. Kustov, and M. D. Starostenkov, “Computer simulation of the interaction of vacancies with the special tilt grain boundaries,” Mater. Sci. Eng., A. 387–389, 738–742 (2004).

    Article  Google Scholar 

  24. 24.

    O. Kastner, G. Eggeler, W. Weiss, and G. J. Ackland, “Molecular dynamics simulation study of microstructure evolution during cyclic martensitic transformations,” J. Mech. Phys. Solids 59, 1888–1908 (2011).

    Article  Google Scholar 

  25. 25.

    E. A. Korznikova, “Study of pressure effect on the kinetics of deformation induced grain growth in twodimensional crystal with nanosized grains,” Pis’ma Mater. 3, 330–334 (2013).

    Google Scholar 

  26. 26.

    O. Kastner, “Molecular-dynamics of a 2D model of the shape memory effect,” Continuum Mech. Thermodyn. 15, 487–502 (2003).

    Article  Google Scholar 

  27. 27.

    O. Kastner, “Molecular-dynamics of a 2D model of the shape memory effect,” Continuum Mech. Thermodyn. 18, 63–81 (2006).

    Article  Google Scholar 

  28. 28.

    G. M. Poletaev, A. V. Sannikov, A. A. Berdychenko, and M. D. Starostenkov, “Molecular dynamics study of plastic deformation mechanisms near the interphase boundary in two-dimensional bimetallic systems,” Mater. Phys. Mech. 22, 15–19 (2015).

    Google Scholar 

  29. 29.

    G. M. Poletaev, M. D. Starostenkov, and I. V. Zorya, “Morse potentials for fcc metals with allowance for the interaction of five coordination shells,” Fundam. Probl. Sovrem. Materialoved. 14, 70–75 (2017).

    Google Scholar 

  30. 30.

    G. M. Poletaev, M. D. Starostenkov, D. V. Novoselova, and V. Y. Tsellermaer, “The study of the thermal stability of Ni3Al nanoneedles using computer simulation,” IOP Conf. Ser.: Mater. Sci. Eng. 116, 012026 (2016).

    Article  Google Scholar 

  31. 31.

    B. F. Dem’yanov, S. L. Kustov, and M. D. Starostenkov, “Computer simulation of the interaction of vacancies with the special tilt grain boundaries,” Mater. Sci. Eng., A. 387-389, 738–742 (2004).

    Article  Google Scholar 

  32. 32.

    Yu. Ivanisenko, L. Kurmanaeva, J. Weissmueller, K. Yang, J. Markmann, H. Rösner, T. Scherer, and H.-J. Fecht, “Deformation mechanisms in nanocrystalline palladium at large strains,” Acta Mater. 57, 3391–3401 (2009).

    Article  Google Scholar 

  33. 33.

    V. N. Chuvil’deev, Non-equilibrium Grain Boundaries in Metals. Theory and Applications (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  34. 34.

    K. Otsuka and C. M. Wayman, Shape Memory Materials (Cambridge university press, Cambridge, 1998).

    Google Scholar 

  35. 35.

    S. Miyazaki, K. Otsuka, and C. M. Wayman, “The shape memory mechanism associated with the martensitic transformation in Ti–Ni alloys—I. Self-accommodation,” Acta Metall. 37, 1873–1884 (1989).

    Article  Google Scholar 

  36. 36.

    V. N. Khachin, V. G. Pushin, and V. V. Kondrat’ev, Titanium Nickelide. Structure and Properties (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  37. 37.

    N. N. Kuranova, A. V. Pushin, V. G. Pushin, A. V. Korolev, and N. I. Kourov, “Structural and phase transformations and properties of TiNi–TiCu quasi-binary alloys,” Tech. Phys. Lett. 42, 376–379 (2016).

    Article  Google Scholar 

  38. 38.

    V. G. Pushin, N. N. Kuranova, A. V. Pushin, A. V. Korolev, and N. I. Kourov, “Effect of copper on the structure–phase transformations and the properties of quasi-binary TiNi–TiCu alloys,” Tech. Phys. 61, 554–562 (2016).

    Article  Google Scholar 

  39. 39.

    V. G. Pushin, N. N. Kuranova, A. V. Pushin, A. N. Uksusnikov, and N. I. Kourov, “Structure and thermoelastic martensitic transformations in ternary Ni–Ti–Hf alloys with a high-temperature shape memory effect,” Tech. Phys. 61, 1009–1014 (2016).

    Article  Google Scholar 

  40. 40.

    E. S. Belosludtseva, N. N. Kuranova, N. I. Kourov, V. G. Pushin, and A. N. Uksusnikov, “Effect of titanium alloying on the structure, the phase composition, and the thermoelastic martensitic transformations in ternary Ni–Mn–Ti alloys,” Tech. Phys. 60, 1330–1334 (2015).

    Article  Google Scholar 

  41. 41.

    Kh. Ya. Mulyukov, I. I. Musabirov, R. R. Mulyukov, V. V. Koledov, V. G. Shavrov, and V. G. Pushin, “Effect of magnetic field on the morphology and fine structure of low-temperature martensite phase in a ferromagnetic Ni2.08Mn0.96Ga0.96 alloy,” Phys. Met. Metallogr. 112, 514–520 (2011).

    Article  Google Scholar 

  42. 42.

    I. I. Musabirov, I. M. Safarov, R. R. Mulyukov, I. Z. Sharipov, and V. V. Koledov, “Development of martensitic transformation induced by severe plastic deformation and subsequent heat treatment in polycrystalline Ni52Mn24Ga24 alloy,” Pis’ma Mater. 4, 265–268 (2014).

    Google Scholar 

  43. 43.

    I. I. Musabirov, I. M. Safarov, I. Z. Sharipov, M. I. Nagimov, V. V. Koledov, V. V. Khovailo and R. R. Mulyukov, “Effect of upsetting deformation temperature on the formation of the fine-grained cast alloy structure of the Ni–Mn–Ga system,” Phys. Met. Metallogr. 59, 1547–1553 (2017).

    Google Scholar 

  44. 44.

    V. G. Pushin, V. V. Stolyarov, R. Z. Valiev, N. I. Kourov, N. N. Kuranova, E. A. Prokofiev, and L. I. Yurchenko, “Features of structure and phase transformations in shape memory TiNi-based alloys after severe plastic deformation,” Ann. Chim. Sci. Mater. 27, 77–88 (2002).

    Article  Google Scholar 

  45. 45.

    A. Mansouri Tehrani, H. Shahrokhshahi, N. Parvin, and J. Brgoch, “Influencing the martensitic phase transformation in NiTi through point defects,” J. Appl. Phys. 118, 014901 (2015).

    Article  Google Scholar 

  46. 46.

    G. Ren and H. Sehitoglu, “Interatomic potential for the NiTi alloy and its application,” Comput. Mater. Sci. 123, 19–25 (2016).

    Article  Google Scholar 

  47. 47.

    W. S. Lai and B. X. Liu, “Lattice stability of some Ni–Ti alloy phases versus their chemical composition and disordering,” J. Phys.: Condens. Matter 12, L53–L56 (2000).

    Google Scholar 

  48. 48.

    D. Mutter and P. Nielaba, “Simulation of structural phase transitions in NiTi,” Phys. Rev. B 82, 224201 (2010).

    Article  Google Scholar 

  49. 49.

    Y. Zhong, K. Gall, and T. Zhu, “Atomistic study of nanotwins in NiTi shape memory alloys,” J. Appl. Phys. 110, 033532 (2011).

    Article  Google Scholar 

  50. 50.

    Yu. N. Gornostyrev, I. N. Karkin, M. I. Katsnelson, and A. V. Trefilov, “Evolution of the atomic structure of metal clusters upon heating and cooling. Computer simulation of fcc metals,” Phys. Met. Metallogr. 96, 135–144 (2003).

    Google Scholar 

  51. 51.

    Y. Zhong, K. Gall, and T. Zhu, “Atomistic characterization of pseudoelasticity and shape memory in NiTi nanopillars,” Acta Mater. 60, 6301–6311 (2012).

    Article  Google Scholar 

  52. 52.

    A. R. Kuznetsov, Yu. N. Gornostyrev, M. I. Katsnelson, and A. V. Trefilov, “Effect of the dislocations on the kinetics of a martensitic transition: MD simulation of BCC–HCP transformation in Zr,” Mater. Sci. Eng., A 309–310, 168–172 (2011).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Baimova.

Additional information

Original Russian Text © Yu.A. Baimova, S.V. Dmitriev, N.N. Kuranova, R.R. Mulyukov, A.V. Pushin, V.G. Pushin, 2018, published in Fizika Metallov i Metallovedenie, 2018, Vol. 119, No. 6, pp. 626–635.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baimova, Y.A., Dmitriev, S.V., Kuranova, N.N. et al. Molecular Dynamics Study of the Deformation Processes of Metallic Materials in Structural and Phase (Martensitic) Transformations. Phys. Metals Metallogr. 119, 589–597 (2018). https://doi.org/10.1134/S0031918X18060042

Download citation

Keywords

  • molecular dynamics
  • simulation
  • mechanisms of plastic deformation
  • martensitic transformation