Physics of Metals and Metallography

, Volume 119, Issue 6, pp 589–597 | Cite as

Molecular Dynamics Study of the Deformation Processes of Metallic Materials in Structural and Phase (Martensitic) Transformations

  • Yu. A. BaimovaEmail author
  • S. V. Dmitriev
  • N. N. Kuranova
  • R. R. Mulyukov
  • A. V. Pushin
  • V. G. Pushin
Structure, Phase Transformations, and Diffusion


The application of the method of molecular dynamics based on the use of pair interatomic potentials has been discussed to study various deformation processes during structural and phase (martensitic) transformations in metallic single and polycrystals. It has been shown that the method of molecular dynamics in a two-dimensional model makes it possible to qualitatively analyze the processes of grain-boundary sliding and other mechanisms of plastic deformation in polycrystals. It is also an efficient tool for describing diffusionless martensitic transformations in metallic materials. As an example, the use of the method for simulating grain-boundary sliding in a polycrystal with nonequilibrium grain boundaries is presented and the mechanisms of overcoming an obstruction in the form of a protruding segment of a grain have been demonstrated at the atomic level. The application of this method for describing the dynamics and morphology of the thermoelastic martensitic transformation has been illustrated by the example of the titanium nickelide and manganese alloys.


molecular dynamics simulation mechanisms of plastic deformation martensitic transformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. V. Astanin, A. V. Sisanbaev, A. I. Pshenichnyuk, and O. A. Kaibyshev, “Self-organization of cooperative grain boundary sliding in aluminium tricrystals,” Scr. Metall. Mater. 36, 117–122 (1997).CrossRefGoogle Scholar
  2. 2.
    N. I. Noskova and R. R. Mulyukov, Submicrocrystalline and Nanocrystalline Metals and Alloys (UrO RAN, Ekaterinburg, 2003).Google Scholar
  3. 3.
    A. A. Nazarov and R. R. Mulyukov, “Nanostructured Materials.” in Handbook of Nanoscience, Engineering, and Technology, Ed. by W. Goddard, D. Brenner, S. Lyshevski, and G. Iafrate (CRC Press, Boca Raton, FL, 2003).Google Scholar
  4. 4.
    R. R. Mulyukov, “Development of the principles of obtaining and investigating bulk nanostructured materials at the Institute for Metals Superplasticity Problems, Russian Academy of Sciences,” Ross. Nanotekhnol. 2, 38–53 (2007) [in Russian].Google Scholar
  5. 5.
    J. A. Baimova, S. V. Dmitriev, A. A. Nazarov, and A. I. Pshenichnyuk, “Dynamics of edge dislocations in a two-dimensional crystal at finite temperatures,” Phys. Solid State 51, 1809–1813 (2009).CrossRefGoogle Scholar
  6. 6.
    A. A. Nazarova, S. V. Dmitriev, Yu. A. Baimova, R. R. Mulyukov, and A. A. Nazarov, “Computer simulation of the effect of ultrasound and annealing on the structure of a two-dimensional severely deformed nanocrystalline material,” Phys. Met. Metallogr. 111, 513–519 (2011).CrossRefGoogle Scholar
  7. 7.
    J. A. Baimova and S. V. Dmitriev, “High-energy mesoscale strips observed in two-dimensional atomistic modeling of plastic deformation of nano-polycrystal,” Comput. Mater. Sci. 50, 1414–1417 (2011).CrossRefGoogle Scholar
  8. 8.
    Yu. A. Baimova, S. V. Dmitriev, and A. A. Nazarov, “Simulation of the effect of strengthening-phase particles on the plastic deformation of a two-dimensional polycrystal,” Phys. Met. Metallogr. 113, 302–311 (2012).CrossRefGoogle Scholar
  9. 9.
    V. V. Astanin, Yu. A. Baimova, S. V. Dmitriev, and A. I. Pshenichnyuk, “Kinetics of overcoming obstructions in cooperative grain-boundary sliding in twodimensional crystals,” Phys. Met. Metallogr. 113, 907–913 (2012).CrossRefGoogle Scholar
  10. 10.
    A. Yu. Kuksin and A. V. Yanilkin, “Atomistic simulation of the motion of dislocations in metals under phonon drag conditions,” Phys. Solid State 55, 1010–1019 (2013).CrossRefGoogle Scholar
  11. 11.
    D. V. Bachurin and P. Gumbsch, “Atomistic simulation of the deformation of nanocrystalline palladium: the effect of voids,” Modell. Simul. Mater. Sci. Eng. 22, 025011 (2014).CrossRefGoogle Scholar
  12. 12.
    R. I. Babicheva, J. A. Baimova, S. V. Dmitriev, and V. G. Pushin, “Two-dimensional model of the ordered alloy for the investigation of martensitic transformation,” J. Mater. Sci. Lett. 5, 359–363 (2015).Google Scholar
  13. 13.
    R. T. Murzaev, D. V. Bachurin, and A. A. Nazarov, “Drift of dislocation tripoles under ultrasound influence,” Ultrasonics 64, 77–82 (2016).CrossRefGoogle Scholar
  14. 14.
    R. Babicheva, K. Zhou, S. Dmitriev, Y. Zhang, and S. W. Kok, “Effect of grain boundary segregation on shear deformation of nanocrystalline binary aluminum alloys at room temperature,” Mater. Sci. Forum 838–839, 89–94 (2016).CrossRefGoogle Scholar
  15. 15.
    A. A. Nazarov, “Molecular dynamics simulation of the effect of ultrasonic vibrations on the structure of nonequilibrium [112] tilt grain boundaries in nickel,” Rev. Adv. Mater. Sci. 47, 42–48 (2016).Google Scholar
  16. 16.
    A. A. Nazarov, “Molecular dynamics simulation of the relaxation of a grain boundary disclination dipole under ultrasonic stresses,” Pis’ma Mater. 6, 179–182 (2016).Google Scholar
  17. 17.
    J. A. Baimova, R. I. Babicheva, A. V. Lukyanov, V. G. Pushin, D. V. Gunderov, and S. V. Dmitriev, “Molecular dynamics for investigation of martensitic transformations,” Rev. Adv. Mater. Sci. 47, 86–94 (2016).Google Scholar
  18. 18.
    G. E. Norman and V. V. Stegailov, “Stochastic theory of the method of classical molecular dynamics,” Matem. Modelir. 24, 3–44 (2012).Google Scholar
  19. 19.
    X.-G. Liang and B. Shi, “Two-dimensional molecular dynamics simulation of the thermal conductance of superlattices,” Mater. Sci. Eng., A. 292, 198–202 (2000).CrossRefGoogle Scholar
  20. 20.
    H.-J. Chang, J. Segurado, O. Rodrıguez de la Fuente, B. M. Pabon, and J. Lorca, “Molecular dynamics modeling and simulation of void growth in two dimensions,” Modell. Simul. Mater. Sci. Eng. 21, 075010 (2013).CrossRefGoogle Scholar
  21. 21.
    G. M. Poletaev, M. D. Starostenkov, and Yu. V. Patsaeva, “Driving mechanisms of self-diffusion in two-dimensional metals,” Fundam. Probl. Sovrem. Materialoved. 1, 124–129 (2004).Google Scholar
  22. 22.
    G. M. Poletaev and M. D. Starostenkov, “Dynamic collective displacements of atoms in metals and their role in the vacancy mechanism of diffusion,” Phys. Solid State 51, 727–732 (2009).CrossRefGoogle Scholar
  23. 23.
    B. F. Dem’yanov, S. L. Kustov, and M. D. Starostenkov, “Computer simulation of the interaction of vacancies with the special tilt grain boundaries,” Mater. Sci. Eng., A. 387–389, 738–742 (2004).CrossRefGoogle Scholar
  24. 24.
    O. Kastner, G. Eggeler, W. Weiss, and G. J. Ackland, “Molecular dynamics simulation study of microstructure evolution during cyclic martensitic transformations,” J. Mech. Phys. Solids 59, 1888–1908 (2011).CrossRefGoogle Scholar
  25. 25.
    E. A. Korznikova, “Study of pressure effect on the kinetics of deformation induced grain growth in twodimensional crystal with nanosized grains,” Pis’ma Mater. 3, 330–334 (2013).Google Scholar
  26. 26.
    O. Kastner, “Molecular-dynamics of a 2D model of the shape memory effect,” Continuum Mech. Thermodyn. 15, 487–502 (2003).CrossRefGoogle Scholar
  27. 27.
    O. Kastner, “Molecular-dynamics of a 2D model of the shape memory effect,” Continuum Mech. Thermodyn. 18, 63–81 (2006).CrossRefGoogle Scholar
  28. 28.
    G. M. Poletaev, A. V. Sannikov, A. A. Berdychenko, and M. D. Starostenkov, “Molecular dynamics study of plastic deformation mechanisms near the interphase boundary in two-dimensional bimetallic systems,” Mater. Phys. Mech. 22, 15–19 (2015).Google Scholar
  29. 29.
    G. M. Poletaev, M. D. Starostenkov, and I. V. Zorya, “Morse potentials for fcc metals with allowance for the interaction of five coordination shells,” Fundam. Probl. Sovrem. Materialoved. 14, 70–75 (2017).Google Scholar
  30. 30.
    G. M. Poletaev, M. D. Starostenkov, D. V. Novoselova, and V. Y. Tsellermaer, “The study of the thermal stability of Ni3Al nanoneedles using computer simulation,” IOP Conf. Ser.: Mater. Sci. Eng. 116, 012026 (2016).CrossRefGoogle Scholar
  31. 31.
    B. F. Dem’yanov, S. L. Kustov, and M. D. Starostenkov, “Computer simulation of the interaction of vacancies with the special tilt grain boundaries,” Mater. Sci. Eng., A. 387-389, 738–742 (2004).CrossRefGoogle Scholar
  32. 32.
    Yu. Ivanisenko, L. Kurmanaeva, J. Weissmueller, K. Yang, J. Markmann, H. Rösner, T. Scherer, and H.-J. Fecht, “Deformation mechanisms in nanocrystalline palladium at large strains,” Acta Mater. 57, 3391–3401 (2009).CrossRefGoogle Scholar
  33. 33.
    V. N. Chuvil’deev, Non-equilibrium Grain Boundaries in Metals. Theory and Applications (Fizmatlit, Moscow, 2004) [in Russian].Google Scholar
  34. 34.
    K. Otsuka and C. M. Wayman, Shape Memory Materials (Cambridge university press, Cambridge, 1998).Google Scholar
  35. 35.
    S. Miyazaki, K. Otsuka, and C. M. Wayman, “The shape memory mechanism associated with the martensitic transformation in Ti–Ni alloys—I. Self-accommodation,” Acta Metall. 37, 1873–1884 (1989).CrossRefGoogle Scholar
  36. 36.
    V. N. Khachin, V. G. Pushin, and V. V. Kondrat’ev, Titanium Nickelide. Structure and Properties (Nauka, Moscow, 1992) [in Russian].Google Scholar
  37. 37.
    N. N. Kuranova, A. V. Pushin, V. G. Pushin, A. V. Korolev, and N. I. Kourov, “Structural and phase transformations and properties of TiNi–TiCu quasi-binary alloys,” Tech. Phys. Lett. 42, 376–379 (2016).CrossRefGoogle Scholar
  38. 38.
    V. G. Pushin, N. N. Kuranova, A. V. Pushin, A. V. Korolev, and N. I. Kourov, “Effect of copper on the structure–phase transformations and the properties of quasi-binary TiNi–TiCu alloys,” Tech. Phys. 61, 554–562 (2016).CrossRefGoogle Scholar
  39. 39.
    V. G. Pushin, N. N. Kuranova, A. V. Pushin, A. N. Uksusnikov, and N. I. Kourov, “Structure and thermoelastic martensitic transformations in ternary Ni–Ti–Hf alloys with a high-temperature shape memory effect,” Tech. Phys. 61, 1009–1014 (2016).CrossRefGoogle Scholar
  40. 40.
    E. S. Belosludtseva, N. N. Kuranova, N. I. Kourov, V. G. Pushin, and A. N. Uksusnikov, “Effect of titanium alloying on the structure, the phase composition, and the thermoelastic martensitic transformations in ternary Ni–Mn–Ti alloys,” Tech. Phys. 60, 1330–1334 (2015).CrossRefGoogle Scholar
  41. 41.
    Kh. Ya. Mulyukov, I. I. Musabirov, R. R. Mulyukov, V. V. Koledov, V. G. Shavrov, and V. G. Pushin, “Effect of magnetic field on the morphology and fine structure of low-temperature martensite phase in a ferromagnetic Ni2.08Mn0.96Ga0.96 alloy,” Phys. Met. Metallogr. 112, 514–520 (2011).CrossRefGoogle Scholar
  42. 42.
    I. I. Musabirov, I. M. Safarov, R. R. Mulyukov, I. Z. Sharipov, and V. V. Koledov, “Development of martensitic transformation induced by severe plastic deformation and subsequent heat treatment in polycrystalline Ni52Mn24Ga24 alloy,” Pis’ma Mater. 4, 265–268 (2014).Google Scholar
  43. 43.
    I. I. Musabirov, I. M. Safarov, I. Z. Sharipov, M. I. Nagimov, V. V. Koledov, V. V. Khovailo and R. R. Mulyukov, “Effect of upsetting deformation temperature on the formation of the fine-grained cast alloy structure of the Ni–Mn–Ga system,” Phys. Met. Metallogr. 59, 1547–1553 (2017).Google Scholar
  44. 44.
    V. G. Pushin, V. V. Stolyarov, R. Z. Valiev, N. I. Kourov, N. N. Kuranova, E. A. Prokofiev, and L. I. Yurchenko, “Features of structure and phase transformations in shape memory TiNi-based alloys after severe plastic deformation,” Ann. Chim. Sci. Mater. 27, 77–88 (2002).CrossRefGoogle Scholar
  45. 45.
    A. Mansouri Tehrani, H. Shahrokhshahi, N. Parvin, and J. Brgoch, “Influencing the martensitic phase transformation in NiTi through point defects,” J. Appl. Phys. 118, 014901 (2015).CrossRefGoogle Scholar
  46. 46.
    G. Ren and H. Sehitoglu, “Interatomic potential for the NiTi alloy and its application,” Comput. Mater. Sci. 123, 19–25 (2016).CrossRefGoogle Scholar
  47. 47.
    W. S. Lai and B. X. Liu, “Lattice stability of some Ni–Ti alloy phases versus their chemical composition and disordering,” J. Phys.: Condens. Matter 12, L53–L56 (2000).Google Scholar
  48. 48.
    D. Mutter and P. Nielaba, “Simulation of structural phase transitions in NiTi,” Phys. Rev. B 82, 224201 (2010).CrossRefGoogle Scholar
  49. 49.
    Y. Zhong, K. Gall, and T. Zhu, “Atomistic study of nanotwins in NiTi shape memory alloys,” J. Appl. Phys. 110, 033532 (2011).CrossRefGoogle Scholar
  50. 50.
    Yu. N. Gornostyrev, I. N. Karkin, M. I. Katsnelson, and A. V. Trefilov, “Evolution of the atomic structure of metal clusters upon heating and cooling. Computer simulation of fcc metals,” Phys. Met. Metallogr. 96, 135–144 (2003).Google Scholar
  51. 51.
    Y. Zhong, K. Gall, and T. Zhu, “Atomistic characterization of pseudoelasticity and shape memory in NiTi nanopillars,” Acta Mater. 60, 6301–6311 (2012).CrossRefGoogle Scholar
  52. 52.
    A. R. Kuznetsov, Yu. N. Gornostyrev, M. I. Katsnelson, and A. V. Trefilov, “Effect of the dislocations on the kinetics of a martensitic transition: MD simulation of BCC–HCP transformation in Zr,” Mater. Sci. Eng., A 309–310, 168–172 (2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. A. Baimova
    • 1
    Email author
  • S. V. Dmitriev
    • 2
    • 3
  • N. N. Kuranova
    • 1
  • R. R. Mulyukov
    • 2
  • A. V. Pushin
    • 1
  • V. G. Pushin
    • 1
    • 4
  1. 1.Mikheev Institute of Metal Physics, Ural BranchRussian Academy of SciencesEkaterinburgRussia
  2. 2.Institute for Metals Superplasticity ProblemsRussian Academy of SciencesUfaRussia
  3. 3.National Research Tomsk State UniversityTomskRussia
  4. 4.Ural Federal UniversityEkaterinburgRussia

Personalised recommendations