Advertisement

Physics of Metals and Metallography

, Volume 119, Issue 4, pp 388–395 | Cite as

Study of Deformation Phenomena in TRIP/TWIP Steels by Acoustic Emission and Scanning Electron Microscopy

  • M. L. Linderov
  • C. Segel
  • A. Weidner
  • H. Biermann
  • A. Yu. Vinogradov
Strength and Plasticity
  • 40 Downloads

Abstract

Modern metastable steels with TRIP/TWIP effects have a unique set of physical-mechanical properties. They combine both high-strength and high-plasticity characteristics, which is governed by processes activated during deformation, namely, twinning, the formation of stacking faults, and martensitic transformations. To study the behavior of these phenomena in CrMnNi TRIP/TWIP steels and stainless CrNiMo steel, which does not have these effects in the temperature range under study, we used the method of acoustic emission and modern methods of signal processing, including the cluster analysis of spectral-density functions. The results of this study have been compared with a detailed microstructural analysis performed with a scanning electron microscope using electron backscatter diffraction (EBSD).

Keywords

TRIP steels TWIP steels austenitic stainless steel acoustic emission cluster analysis scanning electron microscopy martensitic transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Sagaradze and A. I. Uvarov, Strengthening and Properties of Austenitic Alloys (Red.-Izd. Otdel Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 2013) [in Russian].Google Scholar
  2. 2.
    L. A. Mal’tseva, V. A. Sharapova, T. V. Mal’tseva, S. V. Gladkovskii, and A. V. Levina, “Effect of alloying and thermoplastic treatment on the phase composition and properties of corrosion-resistant steels with metastable austenite,” Metalloved. Term. Obrab. Met., No. 11, 17–23 (2011).Google Scholar
  3. 3.
    A. Weidner and H. Biermann, “Combination of different in situ characterization techniques and scanning electron microscopy investigations for a comprehensive description of the tensile deformation behavior of a CrMnNi TRIP/TWIP steel,” JOM 61, 1729–1747 (2015).CrossRefGoogle Scholar
  4. 4.
    J. -B. Seol, J. E. Jung, Y. W. Jang, and C. G. Park, “Influence of carbon content on the microstructure, martensitic transformation and mechanical properties in austenite/e-martensite dual-phase Fe–Mn–C Steels,” Acta Mater. 61, 558–578 (2013).CrossRefGoogle Scholar
  5. 5.
    M. Linderov, C. Segel, A. Weidner, H. Biermann, and A. Vinogradov, “Deformation mechanisms in austenitic TRIP/TWIP steels at room and elevated temperature investigated by acoustic emission and scanning electron microscopy,” Mater. Sci. Eng., A 597, 183–193 (2014).CrossRefGoogle Scholar
  6. 6.
    A. Vinogradov, A. Lazarev, M. Linderov, A. Weidner, and H. Biermann, “Kinetics of deformation processes in high-alloyed cast transformation-induced plasticity/ twinning-induced plasticity steels determined by acoustic emission and scanning electron microscopy: influence of austenite stability on deformation mechanisms,” Acta Mater. 61, 2434–2449 (2013).CrossRefGoogle Scholar
  7. 7.
    A. Weiß, H. Gutte, M. Radke, and P. R. Scheller, Nichtrostender austenitischer Stahlformguss, Verfahren zu dessen Herstellung, und seine Verwendung. International. Patent Registration WO 002008009722A1.Google Scholar
  8. 8.
    A. Weidner, A. Glage, S. Martin, J. Man, V. Klemm, U. Martin, J. Polák, D. Rafaja, and H. Biermann, “Microstructure of austenitic stainless steels of various phase stabilities after cyclic and tensile deformation,” Int. J. Mater. Res. 102, 1374–1377 (2011).CrossRefGoogle Scholar
  9. 9.
    Q.-X. Dai, A.-D. Wang, X.-N. Cheng, and X.-M. Luo, “Stacking fault energy of cryogenic austenitic steels,” Chin. Phys. B 11, 596–600 (2002).CrossRefGoogle Scholar
  10. 10.
    X. Feaugas, “On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K: Back stress and effective stress,” Acta Mater. 47, 3617–3632 (1999).CrossRefGoogle Scholar
  11. 11.
    B. Ravi Kumar, B. Mahato, N. Bandyopadhyay, and D. Bhattacharya, “Comparison of rolling texture in low and medium stacking fault energy austenitic stainless steels,” Mater. Sci. Eng., A 394, 296–301 (2005).CrossRefGoogle Scholar
  12. 12.
    S. Allain, J. -P. Chateau, O. Bouaziz, S. Migot, and N. Guelton, “Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys,” Mater. Sci. Eng., A 387–389, 158–162 (2004).CrossRefGoogle Scholar
  13. 13.
    R. Takeda, Y. Kaneko, D. L. Merson, and A. Vinogradov, “Cluster analysis of acoustic emissions measured during deformation of duplex stainless steels,” Mater. Trans. 54, 532–539 (2013).CrossRefGoogle Scholar
  14. 14.
    J. Byeon, S. Kwun, and K. Kang, “Assessment of tensile and fatigue damage in 316L stainless steel by acoustic emission technique,” Solid State Phenom. 124–126, 1381–1384 (2007).CrossRefGoogle Scholar
  15. 15.
    P. Welch, “The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms,” IEEE Trans. Audio Electroacoust. 15, 70–73 (1967).CrossRefGoogle Scholar
  16. 16.
    E. Pomponi and A. Vinogradov, “A real-time approach to acoustic emission clustering,” Mech. Syst. Signal Process., No. 2, 791–804 (2013).CrossRefGoogle Scholar
  17. 17.
    A. Vinogradov, M. Nadtochij, S. Hashimoto, and S. Miura, “Correlation between spectral parameters of acoustic emission,” Mater. Trans. JIM 36, 426–431 (1995).CrossRefGoogle Scholar
  18. 18.
    R. T. Sedgwick, “Acoustic emission from single crystals of LiF and KCl,” J. Appl. Phys., 39, 1728–1740 (1968).CrossRefGoogle Scholar
  19. 19.
    B. H. Schofield, “Research on the sources and characteristics of acoustic emission,” in Acoustic Emission, ASTM STP 505 (ASTM, Baltimore, 1972), pp. 11–19.CrossRefGoogle Scholar
  20. 20.
    S. L. van Doren, R. B. Pond, and R. E. Green, “Acoustic characteristics of twinning in indium,” J. Appl. Phys. 47, 4343–4348 (1976).CrossRefGoogle Scholar
  21. 21.
    H. N. G. Wadley and R. Mehrabian, “Acoustic emission for materials processing: A review,” Mater. Sci. Eng. 65, 245–263 (1984).CrossRefGoogle Scholar
  22. 22.
    P. Frank and H. Steve, “Sources of acoustic emission generated during the tensile deformation of pure iron,” Acta Metall. 26, 133–139 (1978).CrossRefGoogle Scholar
  23. 23.
    A. Vinogradov, D. Orlov, A. Danyuk, and Y. Estrin, “Effect of grain size on the mechanisms of plastic deformation in wrought Mg–Zn–Zr alloy revealed by acoustic emission measurements,” Acta Mater. 61, 2044–2056 (2013).CrossRefGoogle Scholar
  24. 24.
    G. Dini and R. Ueji, “Effect of grain size and grain orientation on dislocations structure in tensile strained TWIP steel during initial stages of deformation,” Steel Res. Int. 83, 374–378 (2012).CrossRefGoogle Scholar
  25. 25.
    C. Efstathiou and H. Sehitoglu, “Strain hardening and heterogeneous deformation during twinning in Hadfield steel,” Acta Mater. 58, 1479–1488 (2010).CrossRefGoogle Scholar
  26. 26.
    A. Weidner, A. Vinogradov, A. Lazarev, and H. Biermann, “Kinetics of deformation processes in a high-alloy cast TWIP steel determined by acoustic emission and scanning electron microscopy,” Key Eng. Mater. 592–593, 489–492 (2014).Google Scholar
  27. 27.
    H. Biermann, J. Solarek, and A. Weidner, “SEM investigation of high-alloyed austenitic stainless cast steels with varying austenite stability at room temperature and 100°C,” Steel Research Int. 83, 512–520 (2012).CrossRefGoogle Scholar
  28. 28.
    I. N. Bogachev, V. F. Egolaev, and L. S. Malinov, “Transformation of austenite to e-phase at low temperatures,” Fiz. Met. Metalloved. 17 (1), 49–55 (1964).Google Scholar
  29. 29.
    H. Hatano, “Acoustic-emission and stacking-fault energy,” J. Appl. Phys. 48, 4397–4399 (1977).CrossRefGoogle Scholar
  30. 30.
    A. Vinogradov, D. L. Merson, V. Patlan, and S. Hashimoto, “Effect of solution hardening and stacking fault energy on plastic flow and acoustic emission in Cu–Ge alloys,” Mater. Sci. Eng., A 341, 57–73 (2003).CrossRefGoogle Scholar
  31. 31.
    A. Jahn, A. Kovalev, A. Weiß, S. Wolf, L. Krüger, and P. R. Scheller, Temperature depending influence of the martensite formation on the mechanical properties of high-alloyed Cr–Mn–Ni as-cast steels,” Steel Res. Int. 82, 39–44 (2011).CrossRefGoogle Scholar
  32. 32.
    A. Weidner, A. Glage, and H. Biermann, “In-situ characterization of the microstructure evolution during cyclic deformation of novel cast TRIP steel,” Fatigue 2010 Prague Proc. Eng. Vol. 2, No. 1, 1961–1971 (2010).Google Scholar
  33. 33.
    I. V. Shashkov, M. A. Lebyodkin, and T. A. Lebedkina, “Multiscale study of acoustic emission during smooth and jerky flow in an AlMg alloy,” Acta Mater. 60, 6842–6850 (2012).CrossRefGoogle Scholar
  34. 34.
    A. Vinogradov and A. Lazarev, “Continuous acoustic emission during intermittent plastic flow in a-brass,” Scr. Mater. 66, 745–748 (2012).CrossRefGoogle Scholar
  35. 35.
    A. Müller, C. Segel, M. Linderov, A. Vinogradov, A. Weidner, and H. Biermann, “The Portevin–Le Châtelier effect in a metastable austenitic stainless steel,” Metall. Mater. Trans. A 47, 59–74 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. L. Linderov
    • 1
  • C. Segel
    • 2
  • A. Weidner
    • 2
  • H. Biermann
    • 2
  • A. Yu. Vinogradov
    • 1
    • 3
  1. 1.Togliatti State UniversityTogliattiRussia
  2. 2.Technische Universität Bergakademie FreibergFreibergGermany
  3. 3.Norwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations