Skip to main content

Interfacial Microstructure and Its Influence on Resistivity of Thin Layers Copper Cladding Steel Wires

Abstract

The interfacial microstructure and resistivity of cold-drawn and annealed thin layers copper cladding steel (CCS) wires have been systematically investigated by the methods of scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and resistivity testing. The results showed that the Cu and Fe atoms near interface diffused into each other matrixes. The Fe atoms diffused into Cu matrixes and formed a solid solution. The mechanism of solid solution is of substitution type. When the quantity of Fe atoms exceeds the maximum solubility, the supersaturated solid solution would form Fe clusters and decompose into base Cu and α-Fe precipitated phases under certain conditions. A few of α-Fe precipitates was observed in the copper near Cu/Fe interfaces of cold-drawn CCS wires, with 1–5 nm in size. A number of α-Fe precipitates of 1–20 nm in size can be detected in copper near Cu/Fe interfaces of CCS wires annealed at 850°C. When annealing temperature was less than 750°C, the resistivity of CCS wires annealed was lower than that of cold-drawn CCS wires. However, when annealing temperature was above 750°C, the resistivity of CCS wires was greater than that of cold-drawn CCS wires and increased with rising the annealing temperature. The relationship between nanoscale α-Fe precipitation and resistivity of CCS wires has been well discussed.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. A. Nikulin, S. O. Rogachev, A. B. Rozhnov, V. I. Pantsyrnyi, N. E. Khlebova, T. A. Nechaykina, V. M. Khatkevich, and M. Yu. Zadorozhnyy, “Microstructure and fatigue strength of high-strength Cu–Fe and Cu–V in-situ nanocomposite wires,” Composites B 70, 92–98 (2015).

    Article  Google Scholar 

  2. 2.

    L. P. Deng, K. Han, K. T. Hartwig, T. M. Siegrist, L. Y. Dong, Z. Y. Sun, X. F. Yang, and Q. Liu, “Hardness, electrical resistivity, and modeling of in situ Cu–Nb micro composites,” J. Alloys Compd. 602, 331–338 (2014).

    Article  Google Scholar 

  3. 3.

    T. T. Sasaki, M. Barkey, and G. B. Thompson, Y. Syarif, D. Fox “Microstructural evolution of copper clad steel bimetallic wire,” Mater. Sci. Eng., A 528, 2974–2981 (2011).

    Article  Google Scholar 

  4. 4.

    D. C. Ko, S. K. Lee, B. M. Kim, H. H. Jo, and H. Jo, “Evaluation of copper coating ratio in steel/copper clad wire drawing,” J. Mater. Process. Technol. 186, 22–26 (2007).

    Article  Google Scholar 

  5. 5.

    E. Hug and N. Bellido, “Brittleness study of intermetallic (Cu/Al) layers in copper-clad aluminum thin wires,” Mater. Sci. Eng., A 528, 7103–7106 (2011).

    Article  Google Scholar 

  6. 6.

    H. J. Li, Z. M. Ding, J. F. Fang, and Y. Gao, “Effects of annealing process on microstructure and electrical properties of cold-drawn thin layers copper cladding steel wire,” J. Mater. Sci.: Mater. Electron. 25, 5107–5113 (2014).

    Google Scholar 

  7. 7.

    Z. W. Wu, J. J. Lin, Y. Chen, and L. Meng, “Microstructure, mechanical properties and electrical conductivity of Cu–12 wt % Fe micro-composite annealed at different temperatures,” J. Alloys Compd. 467, 213–218 (2009).

    Article  Google Scholar 

  8. 8.

    G. A. Jennan, I. E. Anderson, and J. D. Verhoeven, “Strength and electrical conductivity of deformation processed Cu–15% Fe alloys produced by powder metallurgy,” Metall. Mater. Trans. A 24, 35–42 (1993).

    Article  Google Scholar 

  9. 9.

    H. Z. Wang, K. H. Wang, R. K. Zheng, and S. P. Ringer, “TEM study of weld interface between Cu-Alloy & Steel,” Microsc. Microanal. (Suppl. 2) 11, 2018–2019 (2005).

    Google Scholar 

  10. 10.

    Z. Q. Yao, M. Ma, Q. Liu, and F. Zhao, “Influence of additional element Zr on strength and conductivity of fiber-reinforced Cu–Fe wire,” Procedia Eng. 16, 594–600 (2011).

    Article  Google Scholar 

  11. 11.

    W. A. Spitzig, L. S. Chumbley, and J. D. Verhoeven, “Effect of temperature on the strength and conductivity of a deformation processed Cu–20% Fe composite,” J. Mater. Sci. 27, 2005–2011 (1992).

    Article  Google Scholar 

  12. 12.

    J. D. Verhoeven, S. C. Chueh, and E. D. Gibson, “Strength and conductivity of in situ Cu–Fe alloys,” J. Mater. Sci. 24, 1748–1752 (1989).

    Article  Google Scholar 

  13. 13.

    X. J. Shi, “Study on high strength and high conductivity steel fiber reinforced copper based composite wire,” Master’s Dissertation (Dalian Jiaotong University, 2011).

    Google Scholar 

  14. 14.

    Q. M. Wu, D. Q. Wang, and Y. Gao, “Effect of processing technic on resistivity of copper clad steel (CCS) wire,” Metallic Functional Mater. 19 (3), 10–14 (2012).

    Google Scholar 

  15. 15.

    K. Huang, Physics of solids (Higher Education Press, Beijing, China, 1988).

    Google Scholar 

  16. 16.

    W. Kaveh and N. Wiser, “Deviation from Matthiessen`s rule for the electrical resistivity of dislocations,” J. Phys. F: Met. Phys. 16, 795–80 (1986).

    Article  Google Scholar 

  17. 17.

    J. S. Dugdale and D. K. Zhu, Electrical Properties of Metals and Alloys (Higher Education Press, Beijing, China, 1959).

    Google Scholar 

  18. 18.

    D. K. Shi, Foundation of Material Science (Mechanical Industry Press, Beijing, China, 2008).

    Google Scholar 

  19. 19.

    J. Teichert, Ferrous Metallurgy. Vol. III: - Metallography and Heat Treatment of Steel (McGraw-Hill, New York, 1944).

    Google Scholar 

  20. 20.

    V. Ramakrishna, Diffusion in Solids (Indian Inst. Technol., New Dehli, India, 1970) pp. 359–376.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hongjuan Li.

Additional information

Published in Russian in Fizika Metallov i Metallovedenie, 2018, Vol. 119, No. 4, pp. 350–356.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, H., Ding, Z. & Zhao, R. Interfacial Microstructure and Its Influence on Resistivity of Thin Layers Copper Cladding Steel Wires. Phys. Metals Metallogr. 119, 332–338 (2018). https://doi.org/10.1134/S0031918X18040105

Download citation

Keywords

  • CCS wires
  • annealing treatment
  • interfacial microstructure
  • electrical properties