Advertisement

Physics of Metals and Metallography

, Volume 119, Issue 3, pp 282–288 | Cite as

Features of the Decomposition of Delta Ferrite in Nitrogen-Containing Austenitic Steels

  • V. V. Sagaradze
  • O. V. Fomina
  • T. V. Vikhareva
  • N. V. Kataeva
  • I. G. Kabanova
  • V. A. Zavalishin
Structure, Phase Transformations, and Diffusion
  • 7 Downloads

Abstract

Features of the decomposition of the ferromagnetic δ ferrite with the formation of nonferromagnetic constituents (γ and σ phases) at temperatures of 900–1200°C in a nitrogen-containing austenitic steel have been determined. The transformation of δ ferrite at high temperatures (1100–1200°C) occurs with the formation of Widmanstäatten austenitic crystals in the ferritic matrix. At lower temperatures (900–1000°C), the transformation of δ ferrite develops by discontinuous decomposition with the formation of colonies of alternating plates of paramagnetic γ and σ phases. In the course of formation of the nonferromagnetic state as a result of the decomposition of δ ferrite at 900–1000°C (for 1 h), a subgrain structure with an increased density of dislocations, which is typical of thermomechanical treatment, is retained in the steel previously strengthened by high-temperature deformation.

Keywords

nitrogen-containing austenitic steel delta ferrite sigma phase electron microscopy magnetometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. A. Bannykh and V. M. Blinov, Precipitation-Hardening Nonmagnetic Vanadium-Containing Steels (Nauka, Moscow, 1980) [in Russian].Google Scholar
  2. 2.
    V. V. Sagaradze and A. I. Uvarov, Strengthening and Properties of Austenitic Alloys (RIO UrO RAN, Ekaterinburg, 2013) [in Russian].Google Scholar
  3. 3.
    I. I. Kositsyna and V. V. Sagaradze, “Austenitic steels of various alloying systems strengthened with carbides,” Russ. Metall. (Metally) 2001, 615–623 (2001).Google Scholar
  4. 4.
    I. V. Gorynin, V. V. Rybin, V. A. Malyshevskii, G. Yu. Kalinin, N. V. Malakhov, S. Yu. Mushnikova, and V. D. Yampol’skii, “Designing advanced fundamentally new corrosion-resistant hull steels alloyed with nitrogen,” Vopr. Materialoved., No. 2, 40–54 (2005).Google Scholar
  5. 5.
    V. V. Sagaradze, A. I. Uvarov, N. L. Pecherkina, G. Yu. Kalinin, and S. Yu. Mushnikova, “Effect of a strengthening treatment on the structure and mechanical properties of quenched nitrogen-containing austenitic steel 04Kh20N6G11AM2BF,” Metalloved. Term. Obrab. Met., No. 10, 33–38 (2008).Google Scholar
  6. 6.
    I. V. Gorynin, V. A. Malyshevskii, G. Yu. Kalinin, S. Yu. Mushnikova, O. A. Bannykh, V. M. Blinov, and M. V. Kostina, “Corrosion-resistant high-strength nitrogen-containing steels,” Vopr. Materialoved., No. 3, 7–16 (2009).Google Scholar
  7. 7.
    S. Yu. Mushnikova, V. V. Sagaradze, Yu. I. Filippov, N. V. Kataeva, V. A. Zavalishin, V. A. Malyshevskii, G. Yu. Kalinin, and S. K. Kostin, “Comparative analysis of corrosion cracking of austenitic steels with different contents of nitrogen in chloride-and hydrogencontaining media,” Phys. Met. Metallogr. 116, 626–636 (2015).CrossRefGoogle Scholar
  8. 8.
    S. Yu. Mushnikova, S. K. Kostin, V. V. Sagaradze, and N. V. Kataeva, “Structure, properties, and resistance to stress-corrosion cracking of a nitrogen-containing austenitic steel strengthened by thermomechanical treatment,” Phys. Met. Metallogr. 118, 1155–1167 (2017).CrossRefGoogle Scholar
  9. 9.
    A. M. Parshin, Structure, Strength, and Radiation-Induced Damageability of Corrosion-Resistant Steels and Alloys (Metallurgiya, Chelyabinsk, 1988) [in Russian].Google Scholar
  10. 10.
    H. Keshmiri, A. Momeni, K. Dehghani, G. R. Ebrahimi, and G. Heidari, “Effect of aging time and temperature on mechanical properties and microstructural evolution of 2205 ferritic–austenitic stainless steel,” J. Mater. Sci. Technol. 25, 597–602 (2009).Google Scholar
  11. 11.
    C.-C. Hsich and W. Weite, “Overview of intermetallic sigma (s) phase precipitation in stainless steels,” in International scholarly research network (ISRN) metallurgy, 2012, pp. 1–16. doi: 105402/2012/732471Google Scholar
  12. 12.
    M. V. Kostina, S. O. Muradyan, M. S. Khadyev, and A. A. Korneev, “Phase transformations in a corrosionresistant high-chromium nitrogen-bearing steel,” Russ. Metall. (Metally) 2011, 813–825 (2011).CrossRefGoogle Scholar
  13. 13.
    A. E. Vol, Structure and Properties of Binary Metal Systems oenie i svoistva dvoinykh metallicheskikh sistem (FIZMATLIT, Moscow, 1962) [in Russian].Google Scholar
  14. 14.
    V. V. Sagaradze, I. G. Kabanova, N. L. Pecherkina, and A. N. Malyshev, “Crystal-geometrical features of the ferrite–austenite transformations and the transformation-induced strengthening (naklep) of austenite,” Fiz. Met. Metalloved. 60, 530–541 (1985).Google Scholar
  15. 15.
    C. J. Smithells, Metals Reference Book (Butterworths, Boston, 1976; Metallurgiya, Moscow, 1980).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. V. Sagaradze
    • 1
  • O. V. Fomina
    • 2
  • T. V. Vikhareva
    • 2
  • N. V. Kataeva
    • 1
  • I. G. Kabanova
    • 1
  • V. A. Zavalishin
    • 1
  1. 1.Institute of Metal Physics, Ural BranchRussian Academy of SciencesEkaterinburgRussia
  2. 2.Kurchatov Institute National Research Center – Prometei Central Research Institute of Structural MaterialsSt. PetersburgRussia

Personalised recommendations