Advertisement

Physics of Metals and Metallography

, Volume 119, Issue 3, pp 251–257 | Cite as

Interaction between Carbon Atoms and Carbon Activity in fcc Iron: Thermodynamic Theories and Computer Simulation

  • Ya. M. Ridnyi
  • A. A. Mirzoev
  • V. M. Schastlivtsev
  • D. A. Mirzaev
Structure, Phase Transformations, and Diffusion
  • 17 Downloads

Abstract

The literature data on the interactions between carbon atoms and the methods of calculating its activity in the γ-iron lattice have been analyzed. Both statistical thermodynamic results and the data obtained by methods of computer simulation have been considered. To compare the available results, the simulation of the carbon activity in austenite using the Monte Carlo method has been carried out. It has been shown that the experimental curve of the concentration dependence of the carbon activity can be reproduced using a large number of strongly differing energies of interactions between carbon atoms in the first two coordination shells. Thus, the problem of determining the parameters of the С–С interaction in fcc iron according to the data on the activity is mathematically ill posed and first-principles calculations are necessary. It has been shown that, at carbon concentrations of up to 7 at %, the approximate statistical theories lead to accurate results. An analysis of the results of an ab initio simulation showed that the inclusion of the interaction between carbon atoms in the third and fourth coordination shells hardly affect the carbon activity.

Keywords

first-principles simulation fcc iron carbon impurities Monte Carlo method WIEN2k 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Popov, Simulation of Carbonitride Transformations upon Heat Treatment of Steels (UrO RAN, Ekaterinburg, 2003) [in Russian].Google Scholar
  2. 2.
    P. Gustafson, “Thermodynamic evaluation of the Fe?C System,” Scand. J. Metall. 14, 259–267 (1985).Google Scholar
  3. 3.
    I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Calculations of the influence of alloying elements (Al, Cr, Mn, Ni, Si) on the solubility of carbonitrides in low-carbon low-alloy steels,” Phys. Met. Metallogr. 117, 1226–1236 (2016).CrossRefGoogle Scholar
  4. 4.
    I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Thermodynamic calculations of carbonitride formation in low-alloy low-carbon steels containing V, Nb, and Ti,” Phys. Met. Metallogr. 115, 60–76 (2014).CrossRefGoogle Scholar
  5. 5.
    Ya. M. Ridnyi, A. A. Mirzoev, and D. A. Mirzaev, “Ab initio simulation of dissolution energy and carbon activity in fcc Fe,” Phys. Solid State 59, 1279–1285 (2017).CrossRefGoogle Scholar
  6. 6.
    V. G. Gavrilyuk, Distribution of carbon in steel (Naukova Dumka, Kiev, 1971) [in Russian].Google Scholar
  7. 7.
    M. S. Blanter, “Interaction of interstitial carbon atoms in austenite,” J. Alloys Compd. 291, 167–174 (1999).CrossRefGoogle Scholar
  8. 8.
    A. L. Sozinov, A. G. Balanyuk, and V. G. Gavriljuk, “C–C interaction in iron-base austenite and interpretation of Mössbauer Spectra,” Acta Mater. 45, 225–232 (1997).CrossRefGoogle Scholar
  9. 9.
    V. D. Verner, “On the nature of the internal-friction peak in interstitial solid solutions with an fcc lattice,” Fiz. Tverd. Tela 8, 2318–2321 (1965).Google Scholar
  10. 10.
    B. M. Mogutnov, N. A. Tomilin, and L. A. Shvartsman, Thermodynamics of Iron–Carbon Alloys (Metallurgiya, Moscow, 1972) [in Russian].Google Scholar
  11. 11.
    S. Ban-ya, J. F. Elliott, and J. Chipman, “Thermodynamics of Austenitic Fe–C Alloys,” Metall. Trans. A 1, 1313–1320 (1970).CrossRefGoogle Scholar
  12. 12.
    R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, and K. K. Kelley, Selected Values of Thermodynamic Properties of Binary Alloys (ASM, Metals Park, Ohio, 1973).Google Scholar
  13. 13.
    H. Dunwald and C. Wagner, “Thermodynamische Untersuchungen zum System Eisen–Kohlenstoff–Sauerstoff,” Z. Anorg. Allg. Chem 199, 321–346 (1931).CrossRefGoogle Scholar
  14. 14.
    M. I. Temkin and L. A. Shvartsman, “Activity of carbon in austenite,” Zh. Fiz. Khim., No. 6, 755–760 (1949).Google Scholar
  15. 15.
    L. Kaufman, S. V. Radcliffe, and M. Cohen, Decomposition of Austenite by Diffusional Processes, Ed. by V. F. Zackay and H. I. Aaronson (Interscience, New York, 1962).Google Scholar
  16. 16.
    V. A. Kozheurov, “On the thermodynamics of interstitial solid solutions,” Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 2, 10–16 (1965).Google Scholar
  17. 17.
    K. Alex and R. B. Mclellan, “A Statistical mechanical calculation of the thermodynamic properties of interstitial solid solutions involving second nearest neighbor interactions,” Acta Metall. 20, 11–18 (1972).CrossRefGoogle Scholar
  18. 18.
    K. Alex and R. B. Mclellan, “The application of Kirkwood expansions to binary interstitial solutions,” Acta Metall. 19, 439–443 (1971).CrossRefGoogle Scholar
  19. 19.
    K. Alex and R. B. Mclellan, “The Effect of third nearest neighbor interactions on the thermodynamic properties of interstitial solid solutions,” Acta Metall. 21, 107–115 (1973).CrossRefGoogle Scholar
  20. 20.
    C. H. P. Lupis, Chemical Thermodynamics of Materials (North-Holland, New York, 1983; Moscow: Metallurgiya, 1989.Google Scholar
  21. 21.
    L. A. Bol’shov and V. N. Suslov, “Statistical and Monte Carlo studies of short-range order in the austenite of the Fe–C system,” Phys. Met. Metallogr. 98, 547–550 (2004).Google Scholar
  22. 22.
    J. Maier and M. Goeppert-Maier, Statistical Mechanics (Wiley, New York, 1977; Mir, Moscow, 1980).Google Scholar
  23. 23.
    G. E. Murch and R. J. Thorn, “Computer simulation of the carbon activity in austenite,” Acta. Metall. 27, 201–204 (1979).CrossRefGoogle Scholar
  24. 24.
    K. Oda, H. Fujimura, and H. Ino, “Local interactions in carbon–carbon and carbon–M (M: Al, Mn, Ni) atomic pairs in FCC ?-iron,” J. Phys.: Condens. Matter 6, 679–692 (1994).Google Scholar
  25. 25.
    A. V. Ponomareva, Yu. N. Gornostyrev, and I. A. Abrikosov, “Energy of interaction between carbon impurities in paramagnetic ?-iron,” J. Exp. Theor. Phys. 120, 716–724 (2015).CrossRefGoogle Scholar
  26. 26.
    L. A. Bol’shov and V. N. Suslov, “Statistical calculations of the thermodynamic coefficients of solutions of carbon in gamma iron,” Zh. Fiz. Khim. 78, 424–427 (2004).Google Scholar
  27. 27.
    O. I. Gorbatov, S. V. Okatov, Yu. N. Gornostyrev, P. A. Korzhavyi, and A. V. Ruban, “Effect of magnetism on the solubility of 3d elements in bcc iron: Results of first-principle investigations,” Phys. Met. Metallogr. 114, 642–653 (2013).CrossRefGoogle Scholar
  28. 28.
    O. I. Gorbatov, Yu. N. Gornostyrev, P. A. Korzhavyi, and A. V. Ruban, “Ab Initio Modeling of Decomposition in Iron Based Alloy,” Phys. Metals Metallogr. 117, 1293–1327 (2016).CrossRefGoogle Scholar
  29. 29.
    A. Zunger, S. H. Wei, L. G. Ferreira, and J. E. Bernard, “Special Quasirandom Structures,” Phys. Rev. Lett. 65, 353–356 (1990).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Ya. M. Ridnyi
    • 1
  • A. A. Mirzoev
    • 1
  • V. M. Schastlivtsev
    • 2
  • D. A. Mirzaev
    • 1
  1. 1.South Ural State UniversityChelyabinskRussia
  2. 2.Institute of Metal Physics, Ural BranchRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations