Advertisement

Physics of Metals and Metallography

, Volume 119, Issue 3, pp 289–300 | Cite as

Study of the Properties of a High-Temperature 50Ti–40Pd–10Ni Shape Memory Alloy

  • N. N. Popov
  • V. F. Lar’kin
  • D. V. Presnyakov
  • E. N. Grishin
  • T. I. Sysoeva
  • T. A. Morozova
  • G. A. Potemkin
  • A. A. Kostyleva
Strength and Plasticity

Abstract

Combined studies of the properties of the 50Ti–40Pd–10Ni alloy with a high-temperature shape memory effect have been carried out. The elemental and phase compositions and its mechanical and thermomechanical characteristics have been determined. Samples cut from the strip with a thickness of 2.04 mm have been studied. The phase transformations are in the range of Mf = 371.3°С to Af = 436.9°С. These are acceptable values. The maximum values of the shape memory effect εSME and of the degree of shape recovery ηSME are 3.9 and 49%, respectively. These values are insufficient to create workable safety devices. These characteristics can be improved via optimal changes in the elemental composition of the shape memory alloy and by an adequate choice of the regimes of heat treatment and of the regimes of providing strain in the investigated objects. The results of these studies are necessary in order to develop different devices used in nuclear power plants.

Keywords

50Ti–40Pd–10Ni alloy high-temperature shape memory effect heat treatment elemental analysis microstructure X-ray diffraction analysis differential thermal analysis mechanical characteristics thermomechanical characteristics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    “Ten years of development”, Strana Rosatom, No. 38(262), p. 7 (2016).Google Scholar
  2. 2.
    N. N. Popov and V. F. Lar’kin, RF Patent 2541515, 2015.Google Scholar
  3. 3.
    N. N. Popov, I. A. Korchuganov, V. F. Lar’kin, and D. V. Presnyakov, “Investigation of the shape-memory effect in a commercial titanium alloy VT16 aimed at its use in safety devices of atomic engineering,” in International Conference “Shape-Memory Alloys: Properties, Technologies, Perspectives”, May 26–30 May, 2014, Vitebsk, Belarus (Vitebsk. Gos. Tekhnol. Univ., Vitebsk, 2014), pp. 81–83.Google Scholar
  4. 4.
    J. Ma, I. Karaman, and R. D. Noebe, “High Temperature Shape Memory Alloys,” Int. Mater. Rev. 55, 257–315 (2010).CrossRefGoogle Scholar
  5. 5.
    Titanium-Nickelide-Based Shape-Memory Alloys, Part 1: Structure, Phase Transformations, and Properties, Ed. by V. G. Pushin (UrO RAN, Ekaterinburg, 2006) [in Russian].Google Scholar
  6. 6.
    A. P. Kulaichev, Universal program statistical packet STADIA (version 7.0) for Windows (NPO “Informatika i komp’yutery”, Moscow, 2007) [in Russian].Google Scholar
  7. 7.
    A. P. Kulaichev, Methods and Tools for a Complex Analysis of Data (Forum: Infra-M, Moscow) [in Russian].Google Scholar
  8. 8.
    M. N. Stepnov, Statistical Methods of Processing of the Results of Mechanical Tests (Mashinostroenie, Moscow, 1985) [in Russian].Google Scholar
  9. 9.
    Alphabetical Index of Inorganic Phases, JCPDS Powder Diffraction File.(International Center for Diffraction Data, 1989).Google Scholar
  10. 10.
    S. S. Gorelik and L. N. Rastorguev, and Yu. A. Skakov, X-rayDiffraction and Electronographic Analysis of Metals (Metallurgizdat, Moscow, 1970) [in Russian].Google Scholar
  11. 11.
    N. N. Popov, RF Patent No. 2478928, 2013.Google Scholar
  12. 12.
    N. N. Popov, V. F. Lar’kin, D. V. Presnyakov, A. A. Aushev, T. I. Sysoeva, A. A. Kostyleva, and E. B. Suvorova, “Investigation of thermomechanical characteristics of shape-memory alloys of the Ti–Ni–Nb system and of the effect of heat treatment on them,” Phys. Met. Metallogr. 114, 348–357 (2013).CrossRefGoogle Scholar
  13. 13.
    D. Golberg, Y. Xu, Y. Murakami, K. Otsuka, T. Ueki, and H. Horikawa, “High-temperature shape memory effect in Ti50Pd50–xNix (x = 10, 15, 20) Alloys,” Mater. Letters 22, 241–246 (1995).CrossRefGoogle Scholar
  14. 14.
    P. K. Kumar and D. C. Lagoudas, “Experimental and Microstructural Characterization of Simultaneous Creep, Plasticity and Phase Transformation in Ti50Pd40Ni10 High-Temperature Shape Memory Alloy,” Acta Mater. 58, 1618–1628 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. N. Popov
    • 1
  • V. F. Lar’kin
    • 1
  • D. V. Presnyakov
    • 1
  • E. N. Grishin
    • 1
  • T. I. Sysoeva
    • 1
  • T. A. Morozova
    • 1
  • G. A. Potemkin
    • 1
  • A. A. Kostyleva
    • 1
  1. 1.Russian Federal Nuclear CenterAll-Russia Research Institute of Experimental PhysicsSarov, Nizhny Novgorod oblastRussia

Personalised recommendations