Physics of Metals and Metallography

, Volume 119, Issue 3, pp 203–211 | Cite as

Transitions between Segments of C- and S-Shaped Domain Walls in Magnetically Uniaxial and Triaxial Films

  • M. N. Dubovik
  • E. Z. Baykenov
  • V. V. Zverev
  • B. N. Filippov
Theory of Metals


A three-dimensional micromagnetic computer simulation of transition structures that separate regions of C- and S-shaped vortex asymmetric domain walls in films with easy magnetization axes parallel to the surface has been performed. Films with uniaxial and triaxial magnetic anisotropy (with the surface parallel to crystallographic plane (100)) have been examined. New types of transition structures (including those containing Bloch points) have been obtained.


magnetic films micromagnetism domain walls Bloch lines Bloch points 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Malozemoff and J. C, Slonczewski, Magnetic Domain Walls in Bubble Materials (Academic, NewYork, 1979; Mir, Moscow, 1982).Google Scholar
  2. 2.
    S. Huo, J. E. L. Bishop, J. W. Tucker, W. M. Rainforth, and H. A. Davies, “3-D simulation of Bloch lines in 180° domain walls in thin iron films,” J. Magn. Magn. Mater. 177–181, 229–230 (1998).CrossRefGoogle Scholar
  3. 3.
    S. Huo, J. E. L. Bishop, J. W. Tucker, W. M. Rainforth, and H. A. Davies, “3-D micromagnetic simulation of a Bloch line between C-sections of a 180° domain wall in a {100} iron film,” J. Magn. Magn. Mater. 218, 103–113 (2000).CrossRefGoogle Scholar
  4. 4.
    M. Redjdal, A. Kakay, T. Trunk, M. F. Ruane, and F. B. Humphrey, “Simulation of three-dimensional nonperiodic structures of p-vertical Bloch line (pi-VBL) and 2p-VBL (2pi-VBL) in Permalloy Films,” J. Appl. Phys. 89, 7609–7611 (2001).CrossRefGoogle Scholar
  5. 5.
    V. V. Zverev and B. N. Filippov, “Transition micromagnetic structures in asymmetric vortexlike domain walls (static solutions and dynamic reconstructions),” J. Exp. Theor. Phys. 117, 108–120 (2013).CrossRefGoogle Scholar
  6. 6.
    V. V. Zverev, B. N. Filippov, and M. N. Dubovik, “Transition micromagnetic structures in the Bloch and Néel asymmetric domain walls containing singular points,” Phys. Solid. State 56, 1785–1794 (2014).CrossRefGoogle Scholar
  7. 7.
    V. V. Zverev and B. N. Filippov, “Three-dimensional simulation of irregular dynamics of topological solitons in moving magnetic domain walls,” Phys. Solid. State 58, 485–496 (2016).CrossRefGoogle Scholar
  8. 8.
    V. V. Zverev, B. N. Filippov, and M. N. Dubovik, “Three-dimensional simulation of nonlinear dynamics of domain walls in films with perpendicular anisotropy,” Phys. Solid State 59, 520–531 (2017).CrossRefGoogle Scholar
  9. 9.
    E. Zueco, W. Rave, R. Schafer, M. Mertig, and L. Shultz, “Observation of Fe surfaces with magnetic force and Kerr microscopy,” J. Magn. Magn. Mater. 196–197, 115–117 (1999).CrossRefGoogle Scholar
  10. 10.
    M. Schneider, St. Müller-Pfeiffer, and W. Sinn, “Magnetic force microscopy of domain wall fine structures in iron films,” J. Appl. Phys. 79, 8578–8583 (1996).CrossRefGoogle Scholar
  11. 11.
    S. Huo, J. E. L. Bishop, J. W. Tucker, M. A. Al-Khafaji, W.M. Rainforth, H.A. Davies, and M.R.J. Gibbs, “Micromagnetic and MFM studies of a domain wall in thick {110} FeSi,” J. Magn. Magn. Mater. 190, 17–27 (1998).CrossRefGoogle Scholar
  12. 12.
    R. Schafer, W. K. Ho, Y. Yamasaki, A. Hubert, and F. B. Humphrey, “Anisotropy pinning of domain walls in a soft amorphous magnetic material,” IEEE Trans. Magn. 27, 3678–3689 (1991).CrossRefGoogle Scholar
  13. 13.
    A. E. La Bonte, “Two-dimensional Bloch-type domain wall in ferromagnetic films,” J. Appl. Phys. 40, 2450–2458 (1969).CrossRefGoogle Scholar
  14. 14.
    A. Hubert, “Stray-field free magnetization configurations,” Phys. Status Solidi A 32, 519–534 (1969).CrossRefGoogle Scholar
  15. 15.
    B. N. Filippov, “Asymmetric vortex-chain domain walls in triaxial magnetic (110) films,” Phys. Solid State 50, 670–675 (2008).CrossRefGoogle Scholar
  16. 16.
    A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Nonlinear Magnetization Waves. Dynamic and Topological Solitons (Naukova dumka, Kiev, 1983) [in Russian].Google Scholar
  17. 17.
    A. J. Newell, W. Williams, and D. J. Dunlop, “A Generalization of the demagnetizing tensor for nonuniform magnetization,” J. Geophys. Res. Solid Earth 98, 9551–9555 (1993).CrossRefGoogle Scholar
  18. 18.
    M. E. Schabes and A. Aharony, “Magnetistatic interaction fields for three-dimensional array of ferromagnetic cubes,” IEEE Trans. Magn. 23, 3882–3888 (1987).CrossRefGoogle Scholar
  19. 19.
    A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, “The design and verification of MuMax3,” AIP Advances 4, 107133 (2014).CrossRefGoogle Scholar
  20. 20.
    M. J. Donahue and D. G. Porter, OOMMF User’s Guide, Version 1.0 NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, MD, 1999.Google Scholar
  21. 21.
    M. J. Donahue, “Micromagnetic investigation of periodic cross-tie/vortex wall geometry,” Adv. Condens. Matter Phys 2012, 908692 (2012).Google Scholar
  22. 22.
    B. N. Filippov, M. N. Dubovik, and V. V. Zverev, “Numerical studies of micromagnetic configurations in stripes with in-plane anisotropy and low quality factor,” J. Magn. Magn. Mater. 374, 600–606 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. N. Dubovik
    • 1
    • 2
  • E. Z. Baykenov
    • 2
  • V. V. Zverev
    • 2
  • B. N. Filippov
    • 1
    • 2
  1. 1.Mikheev Institute of Metal Physics, Ural BranchRussian Academy of SciencesEkaterinburgRussia
  2. 2.Ural Federal UniversityEkaterinburgRussia

Personalised recommendations