Skip to main content
Log in

Transitions between Segments of C- and S-Shaped Domain Walls in Magnetically Uniaxial and Triaxial Films

  • Theory of Metals
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

A three-dimensional micromagnetic computer simulation of transition structures that separate regions of C- and S-shaped vortex asymmetric domain walls in films with easy magnetization axes parallel to the surface has been performed. Films with uniaxial and triaxial magnetic anisotropy (with the surface parallel to crystallographic plane (100)) have been examined. New types of transition structures (including those containing Bloch points) have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Malozemoff and J. C, Slonczewski, Magnetic Domain Walls in Bubble Materials (Academic, NewYork, 1979; Mir, Moscow, 1982).

    Google Scholar 

  2. S. Huo, J. E. L. Bishop, J. W. Tucker, W. M. Rainforth, and H. A. Davies, “3-D simulation of Bloch lines in 180° domain walls in thin iron films,” J. Magn. Magn. Mater. 177–181, 229–230 (1998).

    Article  Google Scholar 

  3. S. Huo, J. E. L. Bishop, J. W. Tucker, W. M. Rainforth, and H. A. Davies, “3-D micromagnetic simulation of a Bloch line between C-sections of a 180° domain wall in a {100} iron film,” J. Magn. Magn. Mater. 218, 103–113 (2000).

    Article  Google Scholar 

  4. M. Redjdal, A. Kakay, T. Trunk, M. F. Ruane, and F. B. Humphrey, “Simulation of three-dimensional nonperiodic structures of p-vertical Bloch line (pi-VBL) and 2p-VBL (2pi-VBL) in Permalloy Films,” J. Appl. Phys. 89, 7609–7611 (2001).

    Article  Google Scholar 

  5. V. V. Zverev and B. N. Filippov, “Transition micromagnetic structures in asymmetric vortexlike domain walls (static solutions and dynamic reconstructions),” J. Exp. Theor. Phys. 117, 108–120 (2013).

    Article  Google Scholar 

  6. V. V. Zverev, B. N. Filippov, and M. N. Dubovik, “Transition micromagnetic structures in the Bloch and Néel asymmetric domain walls containing singular points,” Phys. Solid. State 56, 1785–1794 (2014).

    Article  Google Scholar 

  7. V. V. Zverev and B. N. Filippov, “Three-dimensional simulation of irregular dynamics of topological solitons in moving magnetic domain walls,” Phys. Solid. State 58, 485–496 (2016).

    Article  Google Scholar 

  8. V. V. Zverev, B. N. Filippov, and M. N. Dubovik, “Three-dimensional simulation of nonlinear dynamics of domain walls in films with perpendicular anisotropy,” Phys. Solid State 59, 520–531 (2017).

    Article  Google Scholar 

  9. E. Zueco, W. Rave, R. Schafer, M. Mertig, and L. Shultz, “Observation of Fe surfaces with magnetic force and Kerr microscopy,” J. Magn. Magn. Mater. 196–197, 115–117 (1999).

    Article  Google Scholar 

  10. M. Schneider, St. Müller-Pfeiffer, and W. Sinn, “Magnetic force microscopy of domain wall fine structures in iron films,” J. Appl. Phys. 79, 8578–8583 (1996).

    Article  Google Scholar 

  11. S. Huo, J. E. L. Bishop, J. W. Tucker, M. A. Al-Khafaji, W.M. Rainforth, H.A. Davies, and M.R.J. Gibbs, “Micromagnetic and MFM studies of a domain wall in thick {110} FeSi,” J. Magn. Magn. Mater. 190, 17–27 (1998).

    Article  Google Scholar 

  12. R. Schafer, W. K. Ho, Y. Yamasaki, A. Hubert, and F. B. Humphrey, “Anisotropy pinning of domain walls in a soft amorphous magnetic material,” IEEE Trans. Magn. 27, 3678–3689 (1991).

    Article  Google Scholar 

  13. A. E. La Bonte, “Two-dimensional Bloch-type domain wall in ferromagnetic films,” J. Appl. Phys. 40, 2450–2458 (1969).

    Article  Google Scholar 

  14. A. Hubert, “Stray-field free magnetization configurations,” Phys. Status Solidi A 32, 519–534 (1969).

    Article  Google Scholar 

  15. B. N. Filippov, “Asymmetric vortex-chain domain walls in triaxial magnetic (110) films,” Phys. Solid State 50, 670–675 (2008).

    Article  Google Scholar 

  16. A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Nonlinear Magnetization Waves. Dynamic and Topological Solitons (Naukova dumka, Kiev, 1983) [in Russian].

    Google Scholar 

  17. A. J. Newell, W. Williams, and D. J. Dunlop, “A Generalization of the demagnetizing tensor for nonuniform magnetization,” J. Geophys. Res. Solid Earth 98, 9551–9555 (1993).

    Article  Google Scholar 

  18. M. E. Schabes and A. Aharony, “Magnetistatic interaction fields for three-dimensional array of ferromagnetic cubes,” IEEE Trans. Magn. 23, 3882–3888 (1987).

    Article  Google Scholar 

  19. A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, “The design and verification of MuMax3,” AIP Advances 4, 107133 (2014).

    Article  Google Scholar 

  20. M. J. Donahue and D. G. Porter, OOMMF User’s Guide, Version 1.0 NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, MD, 1999.

    Google Scholar 

  21. M. J. Donahue, “Micromagnetic investigation of periodic cross-tie/vortex wall geometry,” Adv. Condens. Matter Phys 2012, 908692 (2012).

    Google Scholar 

  22. B. N. Filippov, M. N. Dubovik, and V. V. Zverev, “Numerical studies of micromagnetic configurations in stripes with in-plane anisotropy and low quality factor,” J. Magn. Magn. Mater. 374, 600–606 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zverev.

Additional information

Original Russian Text © M.N. Dubovik, E.Z. Baykenov, V.V. Zverev, B.N. Filippov, 2018, published in Fizika Metallov i Metallovedenie, 2018, Vol. 119, No. 3, pp. 219–226.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubovik, M.N., Baykenov, E.Z., Zverev, V.V. et al. Transitions between Segments of C- and S-Shaped Domain Walls in Magnetically Uniaxial and Triaxial Films. Phys. Metals Metallogr. 119, 203–211 (2018). https://doi.org/10.1134/S0031918X18030055

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X18030055

Keywords

Navigation