Physics of Metals and Metallography

, Volume 119, Issue 1, pp 6–17 | Cite as

A Study of the Magnetoelastic Effect of Metal Textured Ni–5 at % W Tapes

  • A. A. NikonovEmail author
Electrical and Magnetic Properties


In the temperature range of 50–360 K, the effect of the plane mechanical deformations on the magnetic susceptibility χac(T) of metal biaxially textured Ni–5.0 at % W tapes has been investigated. To create the state of plane stress, the temperature cycling of thin tapes cemented to thick substrates of Si, Mo, Ti, and D16T aluminum alloy has been performed. It has been shown that the main features of the magnetic susceptibility behavior can be explained by magnetoorientation transitions and the appearance of internal stresses σ(T) exceeding the yield strength of the tape material.


magnetoelastic effect magnetic susceptibility yield strength magnetic anisotropy magnetoorientation transitions superconductivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Nast, B. Obst, A. Nyilas, and W. Goldacker, “BiTEP (biaxially textured electroplating): A novel route for making improved coated conductors, based on a well-established technique,” Supercond. Sci. Technol. 17, 710–716 (2004).CrossRefGoogle Scholar
  2. 2.
    H. Suo, L. Ma, M. Gao, Y. Meng, Y. Wang, M. Liu, Y. Zhao, and J.-C. Grivel, “Development of cube textured Ni–W alloy substrates used for coated conductors,” J. Phys.: Conf. Ser. 507, 022039 (2014).Google Scholar
  3. 3.
    I. V. Gervasyeva, D. P. Rodionov, and Yu. V. Khlebnikova, “Texture, structure and properties of Ni-based binary alloy tapes for HTS substrates,” J. Mater. Res., 25, 1245–1251 (2010).Google Scholar
  4. 4.
    D. P. Rodionov, I. V. Gervas’eva, Yu. V. Khlebnikova, V. A. Sazonova, and B. K. Sokolov, “Effect of alloying and heat treatment on the formation of recrystallization cube texture in nickel alloys,” Phys. Met. Metallogr. 99, 80–89 (2005).Google Scholar
  5. 5.
    D. P. Rodionov, I. V. Gervas’eva, Yu. N. Akshentsev, V. A. Kazantsev, Yu. V. Khlebnikova, V. A. Sazonova, N. I. Vinogradova, G. A. Dosovitskii, A. R. Kaul, S. N. Mudretsova, A. V. Garshev, and S. V. Samoilenkov, “Investigation of the structure and magnetic and mechanical properties of textured substrates of Ni–Cr–W alloy,” Phys. Met. Metallogr. 109, 632–642 (2010).CrossRefGoogle Scholar
  6. 6.
    C. C. Clickner, J. W. Ekin, N. Cheggour, C. L. H. Thieme, Y. Qiao, Y.-Y. Xie, and A. Goyal, “Mechanical properties of pure Ni and Ni-alloy substrate materials for Y–Ba–Cu–O coated superconductors,” Cryogenics 46, 432–438 (2006).CrossRefGoogle Scholar
  7. 7.
    Y. Zhao, H. L. Suo, Y. H. Zhu, M. Liu, D. He, S. Ye, L. Ma, R. F. Fan, Y. Ji, and M. L. Zhou, “Highly reinforced, low magnetic and biaxially textured Ni–7 at %W/Ni–12 at %W multi-layer substrates developed for coated conductors,” Supercond. Sci. Technol. 21, 075003 (2008).CrossRefGoogle Scholar
  8. 8.
    T. Maeda, M. Mimura, Y. Ohashi, Y. Nagasu, and T. Watanabe, “Strengthened textured metal substrates for coated conductor application,” Physica C 412–414, 838–843 (2004).CrossRefGoogle Scholar
  9. 9.
    Y. Zhao, H. Suo, M. Liu, D. He, Y. X. Zhang, and M. L. Zhou, “Mechanically reinforced and biaxially textured Ni alloys composite substrates for coated conductors,” Physica C 460–462, 1427–1429 (2007).CrossRefGoogle Scholar
  10. 10.
    H. L. Suo, Y. Zhao, M. Liu, S. Ye, Y. H. Zhu, D. He, L. J. Ma, Y. Ji, and M. L. Zhou, “A novel approach using powder metallurgy for strengthened RABiTS composite substrates for coated superconductors,” Supercond. Sci. Technol. 21, 025006 (2008).CrossRefGoogle Scholar
  11. 11.
    K. T. Kim, J. H. Lim, J. H. Kim, S. H. Jang, J. Joo, C.-J. Kim, K. J. Song, and H. S. Shin, “Effect of W addition on the microstructure and properties of Ni–W substrates for coated conductors,” IEEE Trans. Appl. Supercond. 15, 2683–2686 (2005).CrossRefGoogle Scholar
  12. 12.
    A. O. Ijaduola, J. R. Thompson, A. Goyal, C. L. H. Thieme, and K. Marken, “Magnetism and ferromagnetic loss in Ni–W textured substrates for coated conductors,” Physica C 403, 163–171 (2004).CrossRefGoogle Scholar
  13. 13.
    S. I. Simak, A. V. Ruban, and Yu. H. Vekilov, “Thermodynamic, mechanical and thermal properties of Nialloys from Harris functional LMTO-CPA calculations,” Sol. St. Commun. 87, 393–396 (1993).CrossRefGoogle Scholar
  14. 14.
    D. P. Rodionov, I. V. Gervas’eva, Yu. V. Khlebnikova, V. A. Kazantsev, and V. A. Sazonova, “Textured Ni–Cr–W alloy substrates with Curie temperatures below 77 K for high-temperature superconductors of second generation,” Tech. Phys. Lett. 36, 393–396 (2010).CrossRefGoogle Scholar
  15. 15.
    N. Cheggour, J. W. Ekin, C. C. Clickner, D. T. Verebelyi, C. L. H. Thieme, R. Feenstra, A. Goyal, and M. Paranthaman, “Transverse compressive stress effect in Y–Ba–Cu–O coatings on biaxially textured Ni and Ni-W substrates,” IEEE Tran. Appl. Supercond. 13, 3530–3533 (2003).CrossRefGoogle Scholar
  16. 16.
    N. Cheggour, J. W. Ekin, C. C. Clickner, D. T. Verebelyi, C. L. H. Thieme, R. Feenstra, and A. Goyal, “Reversible axial-strain effect and extended strain limits in Y–Ba–Cu–O coatings on deformation-textured substrates,” J. Appl. Phys. Lett. 83, 4223–4226 (2003).CrossRefGoogle Scholar
  17. 17.
    A. Goyal, M. P. Paranthaman, and U. Schoop, “The RABiTS approach: Using rolling-assisted biaxially textured substrates for high-performance YBCO superconductors,” MRS Bulletin 29, 552–561 (2004).CrossRefGoogle Scholar
  18. 18.
    C. H. Hsueh and M. P. Paranthaman, “Analytical modeling of residual stresses in multilayered superconductor systems,” J. Mater. Sci. 43, 6223–6232 (2008).CrossRefGoogle Scholar
  19. 19.
    J. H. Cheon, P. S. Shankar, and J. P. Singh, “Influence of processing methods on residual stress evolution in coated conductors,” Supercond. Sci. Technol. 18, 142–146 (2005).CrossRefGoogle Scholar
  20. 20.
    V. N. Nikiforov, C. G. Sredin, Yu. V. Kochetkov, and O. N. Vasil’eva, “Misfit stresses in YBa2Cu3O7–x films,” Russ. Phys. J. 43, 334–337 (2000).CrossRefGoogle Scholar
  21. 21.
    D. Verebelyi, E. Harley, J. Scudiere, A. Otto, U. Schoop, C. L. H. Thieme, M. Rupich, and A. Malozemoff, “Practical neutral-axis conductor geometries for coated conductor composite wire,” Supercond. Sci. Technol. 16, 1158–1161 (2003).CrossRefGoogle Scholar
  22. 22.
    V. Arp, “Stresses in superconducting solenoids,” J. Appl. Phys. 48, 2026–2036 (1977).CrossRefGoogle Scholar
  23. 23.
    W. Wang, J. Li, J. Yang, C. Gu, X. Chen, Z. Zang, X. Zhu, W. Lu, H.-B. Wang, P.-H. Wu, Z. Yang, M. Tian, Y. Zhang, and V. V. Moshalkov, “Scotch tape induced strains for enhacing superconductivity of FeSe0.5Te0.5 single crystals,” Appl. Phys. Lett. 105, 232602 (2014).CrossRefGoogle Scholar
  24. 24.
    W. Wang, J. Li, J. Yang, C. Gu, X. Chen, Z. Zang, X. Zhu, W. Lu, H.-B. Wang, P.-H. Wu, Z. Yang, M. Tian, Y. Zhang, and V. V. Moshalkov, “Magnetostriction-induced in situ strain control of superconductivity in FeSe0.5Te0.5,” Appl. Phys. Lett. 106, 062601 (2015).CrossRefGoogle Scholar
  25. 25.
    D. Kirkham, “The variation of the initial susceptibility with temperature, and the variation of the magnetostriction and reversible susceptibility with temperature and magnetization in nickel,” Phys. Rev. 52, 1162–1166 (1937).CrossRefGoogle Scholar
  26. 26.
    D. N. Rakov, V. V. Samusevich, A. V. Nikolaev, A. V. Borisov, and I. M. Abdyukhanov, “A study of the effect of degree of strain on the texture of ribbons from alloys of the Ni–W system with different contents of tungsten,” Metal Sci. Heat Treat. 56, 397–399 (2014).CrossRefGoogle Scholar
  27. 27.
    I. A. Chernykh, M. L. Zanaveskin, A. M. Stroev, L. V. Klevalina, T. S. Krylova, M. Ya. Garaeva, S. A. Tikhomirov, G. L. Platonov, A. A. Nikonov, S. V. Shavkin, and A. K. Shikov, “Development of technology of formation of high-temperature superconducting bands of second generation,” ELEKTRO: Elektrotekhn., Elektroenerg., Elektrotekhn. Promyshl., No. 2, 7–11 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Kurchatovskii Institute Research CenterMoscowRussia

Personalised recommendations