Advertisement

Physics of Metals and Metallography

, Volume 119, Issue 2, pp 197–201 | Cite as

Mechanism of Surface Reinforcement of Steels by Nanocarbon Materials Using Laser Heating

  • G. S. BocharovEmail author
  • A. V. Eletskii
  • O. S. Zilova
  • E. V. Terentyev
  • S. D. Fedorovich
  • O. V. Chudina
  • G. N. Churilov
Strength and Plasticity
  • 30 Downloads

Abstract

The mechanism of the surface reinforcement and wear resistance of steel products are studied as a result of creating the strengthening layers with the nanocarbon using the laser heating. Laser surface treatment using soot remaining after fullerene extraction leads to a more than fivefold increase in the microhardness (up to 1086 HV) and a decrease in the friction coefficient by 20–30%. The conclusion that the reinforcement mechanism involves the formation of eutectic, cementite, martensite, the cellular substructure, and grain refinement is carried out based on metallographic studies of the strengthened layers of technically pure iron with a thickness of 20–70 μm.

Keywords

laser treatment nanocarbon materials technically pure iron microhardness microstructure wear resistance friction coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. V. Chudina, “Modifying the steel surface by laser heating,” Welding Int. 31, 233–237 (2017).CrossRefGoogle Scholar
  2. 2.
    A. Solina, M. de Sanctis, L. Paganini, A. Blarasin, and S. Quaranta, “Origin and development of residual stresses induced by laser surface hardening treatments,” J. Heat Treat. 3, 193–204 (1984).CrossRefGoogle Scholar
  3. 3.
    A. V. Eletskii, “Mechanical properties of carbon nanostructures and related materials,” Phys.-Usp. 50, 225–261 (2007).CrossRefGoogle Scholar
  4. 4.
    O. P. Chernogorova, E. I. Drozdova, I. N. Ovchinnikova, A. Soldatov, and E. Ekimov, “Structure and properties of superelastic hard carbon phase created in fullerene–metal composites by high temperature–high pressure treatment,” J. Appl. Phys. 111, 112601 (2012).CrossRefGoogle Scholar
  5. 5.
    O. P. Chernogorova, E. I. Drozdova, V. M. Blinov, and I. N. Ovchinnikova, “Effect of pressure on the formation superelastic hard particles in a metal–fullerene system and the tribological properties of composite materials reinforced with such particles,” Russ. Metall. (Metally) 2011, 221–227 (2011).CrossRefGoogle Scholar
  6. 6.
    O. P. Chernogorova, E. I. Drozdova, V. M. Blinov, and N. A. Bul’enkov, “Structure and properties of the superelastic and hard carbon particles reinforcing wearresistant composite materials obtained from mixtures of iron and fullerene powders under pressure,” Nanotechn. Russia 3, 344–351 (2008).CrossRefGoogle Scholar
  7. 7.
    M. Reibold, P. Paufler, A. A. Levin, W. Kochmann, N. Pätzke, and D. C. Meyer, “Carbon nanotubes in an ancient Damascus sabre, Nature 444, 286 (2006).CrossRefGoogle Scholar
  8. 8.
    V. D. Sadovskiy, V. M. Schastlivtsev, T. I. Tabatchikova, and I. L. Yakovleva, Laser Heating and Structure of Steel: Atlas of Microstructures (Ural. Otd. Akad. Nauk SSSR, Sverdlovsk, 1989).Google Scholar
  9. 9.
    V. M. Matyunin, A. Yu. Marchenkov, and A. N. Demidov, “Study of size-effect influence on results of hardness determination for different scale levels,” Tekhnol. Metallov, No. 6, 53–54 (2013).Google Scholar
  10. 10.
    M. Atkinson, “Phenomenology of the size effect in hardness tests with a blunt pyramidal indenter,” J. Mater. Sci. 33, 2937–2947 (1998).CrossRefGoogle Scholar
  11. 11.
    N. N. Rykalin, A. A. Uglov, I. V. Zuev, and A. N. Kokora, Laser and Electron-Beam Treatment of Materials. A Handbook (Mashinostroenie, Moscow, 1985) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • G. S. Bocharov
    • 1
    Email author
  • A. V. Eletskii
    • 1
  • O. S. Zilova
    • 1
  • E. V. Terentyev
    • 1
  • S. D. Fedorovich
    • 1
  • O. V. Chudina
    • 2
  • G. N. Churilov
    • 3
  1. 1.National Research University Moscow Power Engineering InstituteMoscowRussia
  2. 2.Moscow Automobile and Road Construction UniversityMoscowRussia
  3. 3.Kirenskii Institute of PhysicsSiberian Branch, Russian Academy of SciencesKrasnoyarskRussia

Personalised recommendations