Skip to main content

Structure and properties of hydrogen-intercalated YBa2Cu3O y

Abstract

The effect of hydrogenation at 150 and 200°С on the structure and magnetic susceptibility of YBa2Cu3Oy (123) with different hydrogen contents has been studied. Upon the incorporation of hydrogen, the phase transition of the 123 phase into a defect tetragonal 124 phase occurs. In contrast to the transition upon hydration, the phase transition upon hydrogenation takes place only for compounds characterized by high oxygen contents (y > 6.5). Depending on the compound structure and oxygen content, hydrogen atoms can both occupy interstitials in Cu–O planes to form HYBa2Cu3O6 and join with oxygen to form an oxide–hydroxide. In contrast to hydration, upon hydrogenation of YBa2Cu3Oy, the substitution of europium for yttrium and alloying with cerium and zirconium oxides do not block the intercalation of hydrogen into the structure of the 123 compound.

This is a preview of subscription content, access via your institution.

References

  1. J. G. Thompson, B. G. Hyde, R. L. Withers, J. S. Anderson, GeraldJ. D. Fitz, J. Bitmead, and M. S. Paterson, “Atmospheric degradation of the hightemperature superconductor YBa2Cu3O(7–x),” Mater. Res. Bull. 22, 1715–1724 (1987).

    Article  Google Scholar 

  2. O. Wada, T. Odaka, M. Wakata, T. Ogama, and A. Yosidome, “Transmission electron microscopy study of the environmental degradation in Ba2Cu3O7–y,” J. Appl. Phys. 68, 5283–5288 (1990).

    Article  Google Scholar 

  3. Z. Rupeng, M. J. Goringe, S. Myhra, and P. S. Turner, “Transmission electron microscopy and high-resolution transmission electron microscopy studies of the early stages in the degradation of YBa2Cu3O7–δ superconductor in water vapor,” Philos. Mag. A 66, 491–506 (1992).

    Article  Google Scholar 

  4. W. Günther, R. Schöllhorn, H. Siegle, and C. Thomsen, “Topotactic reactions of superconducting YBa2Cu3O7 thin films with water vapor,” Solid State Ionics 84, 23–32 (1996).

    Article  Google Scholar 

  5. W. Günther, R. Schöllhorn, M. Epple, H. Siegle, Ch. Thomsen, B. Kabius, U. Poppe, J. Schubert, and W. Zander, “Hydrogen and water intercalation into YBa2Cu3O7–δ: Structural properties of H2YBa2Cu3O8–δ,” Philos Mag. A 79, 449–466 (1999).

    Article  Google Scholar 

  6. B. Steen, Ali. Schougaard, F. Mehnaaz, and J. T. McDevitt, “Evidence for high stability against water corrosion of NdBa2Cu3O7 ± δ relative to YBa2Cu3O7–δ and Eu Ba2Cu3O7–δ,” Appl. Phys. Lett. 84, 1144–1146 (2004).

    Article  Google Scholar 

  7. A. V. Dooglav, A. V. Egorov, I. R. Mukhamedshin, A. V. Savinkov, H. Alloul, J. Bobroff, W. A. MacFarlane, P. Mendels, G. Collin, N. Blanchard, P. G. Picard, P. J. C. King, and J. Lord, “Antiferromagnetic properties of water-vapor-inserted YBa2Cu3O6.5 compound studied by NMR and µSR,” Phys. Rev. B: Condens. Matter Mater. Phys. 70, 054506 (2004).

    Article  Google Scholar 

  8. J. E. Shelby, A. Bhargava, J. J. Simmins, N. L. Corah, P. H. McCluskey, C. Sheckler, and R. L. Snyder, “Atmospheric effects during thermal cycling of Ba2YCu3O7 ± x superconductors,” Mater. Lett. 5, 420–424 (1987).

    Article  Google Scholar 

  9. I. B. Bobylev and N. A. Zyuzeva, “Influence of chemical composition on the stability of YBa2Cu3Oy in a humid atmosphere,” Phys. Solid State 55, 930–936 (2013).

    Article  Google Scholar 

  10. S. V. Sudareva, E. P. Romanov, T. P. Krinitsina, E. I. Kuznetsova, Yu. V. Blinova, I. B. Bobylev, N. A. Zyuzeva, and A. M. Burkhanov, “Fine structure and the mechanism of the low-temperature decomposition of the nonstoichiometric compounds YBa2Cu3O6.8 and YBa2Cu3O6.8 doped with Ce,” Phys. Met. Metallogr. 106, 364–373 (2008).

    Article  Google Scholar 

  11. I. B. Bobylev, S. V. Sudareva, N. A. Zyuzeva, T. P. Krinitsina, A. V. Korolev, Yu. V. Blinova, and E. P. Romanov, “Effect of partial substitution of euro pium and neodymium for yttrium on the low-temperature spinodal decomposition of a 123 phase,” Phys. Met. Metallogr. 98, 288–293 (2004).

    Google Scholar 

  12. I. B. Bobylev and N. A. Zyuzeva, “Effect of low-temperature treatment and subsequent high-temperature annealing on the critical current density of YBa2Cu3Oy,” Phys. Solid State 54, 1332–1335 (2012).

    Article  Google Scholar 

  13. I. B. Bobylev, E. G. Gerasimov, and N. A. Zyuzeva, “Effect of double annealing on the critical parameters of highly textured YBa2Cu3O6.9,” J. Exp. Theor. Phys. 115, 474–479 (2012).

    Article  Google Scholar 

  14. I. B. Bobylev, E. G. Gerasimov, and N. A. Zyuzeva, “Effect of low-temperature annealing on the critical parameters of highly textured YBa2Cu3Oy,” Phys. Solid State 54, 1741–1746 (2012).

    Article  Google Scholar 

  15. I. B. Bobylev, E. G. Gerasimov, and N. A. Zyuzeva, “Improvement of critical parameters of YBa2Cu3O6.9 by low temperature treatment in the presence of water vapors,” Cryogenics 72, 36–43 (2015).

    Article  Google Scholar 

  16. V. Rouco, A. Palau, R. Guzman, J. Gazquez, M. Coll, X. Obradors, and T. Puig, “Role of twin boundaries on vortex pinning of CSD YBCO nanocomposites,” Supercond. Sci. Technol. 27, 125009 (2014).

    Article  Google Scholar 

  17. J. J. Reilly, M. Suenaga, J. R. Johnson, P. Thompson, and A. R. Moodenbaugh, “Superconductivity in HxYBa2Cu3O7,” Phys. Rev. B: Condens. Matter 36, 5694–5697 (1987).

    Article  Google Scholar 

  18. Yu. M. Baikov, V. M. Egorov, I. N. Zimkin, and Yu. P. Stepanov, “Physicochemical properties of pristine, hydrogenated, and oxyhydrogenated yttrium barium cuprates,” Russ. J. Inorg. Chem. 42, 1620–1627 (1997).

    Google Scholar 

  19. T. Hirata, “Hydrogen in high-Tc superconductors,” Phys. Status Solidi A 156, 227–250 (1996).

    Article  Google Scholar 

  20. M. Oku, J. Kimura, M. Omori, and K. Hirokawa, “Determination of the oxidation states of bismuth and copper in superconductor Bi–Ca–Sr–Cu–O by oxidation–reduction titration,” Fresenius Z. Anal. Chem. 335, 382–385 (1989).

    Article  Google Scholar 

  21. W. Kraus and G. Nolze, “POWDER CELL—A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns,” J. Appl. Crystallogr. 29, 301–303 (1996).

    Article  Google Scholar 

  22. I. B. Bobylev, N. A. Zyuzeva, S. V. Sudareva, T. P. Krinitsina, L. N. Kuz’minykh, Yu. V. Blinova, and E. P. Romanov, “Phase diagram of the Ba2YCu3O6–Ba2YCu3O7 system below 400°C,” Phys. Met. Metallogr. 102, 517–521 (2006).

    Article  Google Scholar 

  23. I. B. Bobylev, Yu. S. Ponosov, and N. A. Zyuzeva, “Raman study of the effect of water vapor during lowtemperature annealing on the structure and electrophysical properties of YBa2Cu3Oy,” Mater. Chem. Phys. 167, 1–8 (2015). doi 10.1016/j.matchemphys.2015.10.046

    Article  Google Scholar 

  24. C. Y. Yang, X.-Q. Yang, S. M. Heald, J. J. Reilly, T. Skotheim, A. R. Moodenbaugh, and M. Suenaga, “Superconducting HxYBa2Cu3O7: The role of H,” Phys. Rev. B: Condens. Matter 36, 8798–8801 (1987).

    Article  Google Scholar 

  25. Yu. S. Ponosov, I. B. Bobylev, and N. A. Zyuzeva, “Antiferromagnetic fluctuations in water-intercalated YBa2Cu3O6.8,” JETP Lett. 99, 340–345 (2014).

    Article  Google Scholar 

  26. A. B. Yaroslavtsev, “Proton conductivity of inorganic hydrates,” Russ. Chem. Rev. 63, 429–435 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Bobylev.

Additional information

Original Russian Text © I.B. Bobylev, S.V. Naumov, N.A. Zyuzeva, 2017, published in Fizika Metallov i Metallovedenie, 2017, Vol. 118, No. 7, pp. 705–714.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bobylev, I.B., Naumov, S.V. & Zyuzeva, N.A. Structure and properties of hydrogen-intercalated YBa2Cu3O y . Phys. Metals Metallogr. 118, 671–680 (2017). https://doi.org/10.1134/S0031918X1707002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X1707002X

Keywords

  • HTSC
  • hydrogenation
  • structure