Dilatometric analysis of the process of the nanocrystallization of Fe72.5Cu1Nb2Mo1.5Si14B9 soft magnetic alloy

Abstract

The process of the nanocrystallization of magnetically soft Fe72.5Cu1Nb2Mo1.5Si14B9 alloy has been studied using dilatometry and thermomagnetic analysis, together with structural investigations. It has been shown that the amount of nanocrystalline phase precipitated upon heating of the amorphous precursor is in good agreement with a shortening of the ribbon length in the course of crystallization. Thermal expansion at the different stages of heating and cooling depends on the structural and phase states, as well as on the magnetic state of the alloy. The numerical value of the coefficient of linear thermal expansion decreases with an increase in the fraction of the ferromagnetic crystalline phase.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Y. Yoshizawa, S. Oguma, and K. Yamauchi, “New Febased soft magnetic alloys composed of ultrafine grain structure,” J. Appl. Phys. 64, 6044–6046 (1988).

    Article  Google Scholar 

  2. 2.

    G. Herzer, “Grain structure and magnetism of nanocrystalline ferromagnets,” IEEE Trans. Magn. 25, 3327–3329 (1989).

    Article  Google Scholar 

  3. 3.

    Y. Yoshizawa, “Nanocrystalline soft magnetic materials and their applications,” in Handbook of Advanced Magnetic Materials, Vol. 4: Properties and Applications, Ed. by Y. Liu, D. J. Sellmyer, and D. Shindo (Springer, New York, 2006), pp. 124–158.

    Google Scholar 

  4. 4.

    G. Herzer, “Nanocrystalline soft magnetic alloys,” in Handbook of Magnetic Materials, Vol. 10, Ed. by K. H. J. Buschow (Elsevier, Amsterdam, 1997), pp. 415–462.

    Article  Google Scholar 

  5. 5.

    V. I. Keilin, V. Ya. Belozerov, and Yu. N. Starodubtsev, “Magnetic alloy for annealing in oxide medium and method of its production,” RF Patent 2009258, 1994.

    Google Scholar 

  6. 6.

    V. Ya. Belozerov, Yu. N. Starodubtsev, V. I. Keilin, “Strip core from magnetic alloy on the base of iron,” RF Patent 2033649, 1995.

    Google Scholar 

  7. 7.

    Yu. N. Starodubtsev and V. Ya. Belozerov, Magnetic Properties of Amorphous and Nanocrystalline Alloys (Izd. Ural. Univ., Ekaterinburg, 2002) [in Russian].

    Google Scholar 

  8. 8.

    V. Tsepelev, V. Konashkov, Yu. N. Starodubtsev, V. Ya. Belozerov, and D. Gaipishevarov, “Optimum regime of heat treatment of soft magnetic amorphous materials,” IEEE Trans. Magn. 48, 1327–1330 (2012).

    Article  Google Scholar 

  9. 9.

    J. M. Silveyra, E. Illeková, P. Švec, D. Janickovic, A. Rosales-Rivera, and V. J. Cremaschi, “Phase transformations in Mo-doped FINEMETs,” Physica B 405, 2720–2725 (2010).

    Article  Google Scholar 

  10. 10.

    J. M. Silveyra, V. J. Cremaschi, D. Janickovic, P. Švec, and B. Arcondo, “Structural and magnetic study of Mo-doped FINEMET,” J. Magn. Magn. Mater. 323, 290–296 (2011).

    Article  Google Scholar 

  11. 11.

    B. N. Filippov, V. V. Shulika, A. V. Potapov, and N. F. Vil’danova, “Magnetic properties and temperature stability of a molybdenum-doped FINEMENTtype alloy,” Tech. Phys. 59, 373–377 (2014).

    Article  Google Scholar 

  12. 12.

    Y. C. Niu, X. F. Bian, V. M. Wang, S. F. Jin, G. H. Li, F. M. Chu, and W. G. Zhang, “The peculiarity of contraction in the primary crystallization of amorphous Fe73.5Nb3CuSi13,5B9 alloy,” J. Alloys Compd. 433, 296–301 (2007).

    Article  Google Scholar 

  13. 13.

    J. M. Silveyra, V. J. Cremaschi, G. Vlasák, E. Illeková, D. Janickovic, and P. Švec, “Magnetostrictive behavior of Fe73.5Si13.5B9Nb(3–x)MoxCu alloys,” J. Magn. Magn. Mater. 322, 2350–2354 (2010).

    Article  Google Scholar 

  14. 14.

    O. Kubaschewski, Iron—Binary Phase Diagrams (Springer, Berlin, 1982).

    Google Scholar 

  15. 15.

    C. L. Chien, D. Musser, E. M. Gyorgy, R. C. Sherwood, H. S. Chen, F. E. Luborsky, and J. L. Walter, “Magnetic properties of amorphous FexB(100–x) (72 = x = 86) and crystalline Fe3B,” Phys. Rev. B: Solid State 20, 283–295 (1979).

    Article  Google Scholar 

  16. 16.

    J. B. Jeffries and N. Hershkowitz, “Temperature dependence of the hyperfine interactions of FeB,” Phys. Lett. 30, 187–188 (1969).

    Article  Google Scholar 

  17. 17.

    V. A. Barinov, V. I. Voronin, V. A. Kazantsev, V. A. Tsurin, V. V. Fedorenko, S. I. Novikov, and V. T. Surikov, “Structure and magnetic properties of metastable Fe–B phase,” Phys. Met. Metallogr. 100, 456–467 (2005).

    Google Scholar 

  18. 18.

    W. A. Chen and P. L. Ryder, “X-ray and differential scanning calorimetry study of the crystallization of amorphous Fe73.5CuNb3Si13,5B9 alloy,” Mater. Sci. Eng., B 34, 204–209 (1995).

    Article  Google Scholar 

  19. 19.

    J. M. Borrego, C. F. Conde, and A. Conde, “Thermomagnetic study of devitrification in Fe–Si–B–Cu–Nb(–X) alloys,” Philos. Mag. Lett. 80, 359–365 (2000).

    Article  Google Scholar 

  20. 20.

    R. Gerling, F. P. Schimansky, and R. Wagner, “Restoration of the ductility of thermally embrittled amorphous alloys under neutron-irradiation,” Acta Metall. 35, 1001–1006 (1987).

    Article  Google Scholar 

  21. 21.

    Y. C. Niu, X. E. Bian, and W. M. Wang, “Origin of ductile–brittle transition of amorphous Fe78Si9B13 ribbon during low temperature annealing,” J. Non-Cryst. Solids 341, 40–45 (2004).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. S. Tsepelev.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsepelev, V.S., Starodubtsev, Y.N., Zelenin, V.A. et al. Dilatometric analysis of the process of the nanocrystallization of Fe72.5Cu1Nb2Mo1.5Si14B9 soft magnetic alloy. Phys. Metals Metallogr. 118, 553–557 (2017). https://doi.org/10.1134/S0031918X17060096

Download citation

Keywords

  • soft magnetic alloy
  • crystallization
  • nanocrystalline structure
  • dilatometry