Advertisement

Physics of Metals and Metallography

, Volume 118, Issue 6, pp 553–557 | Cite as

Dilatometric analysis of the process of the nanocrystallization of Fe72.5Cu1Nb2Mo1.5Si14B9 soft magnetic alloy

  • V. S. Tsepelev
  • Yu. N. Starodubtsev
  • V. A. Zelenin
  • V. A. Kataev
  • V. Ya. Belozerov
  • V. V. Konashkov
Electrical and Magnetic Properties
  • 37 Downloads

Abstract

The process of the nanocrystallization of magnetically soft Fe72.5Cu1Nb2Mo1.5Si14B9 alloy has been studied using dilatometry and thermomagnetic analysis, together with structural investigations. It has been shown that the amount of nanocrystalline phase precipitated upon heating of the amorphous precursor is in good agreement with a shortening of the ribbon length in the course of crystallization. Thermal expansion at the different stages of heating and cooling depends on the structural and phase states, as well as on the magnetic state of the alloy. The numerical value of the coefficient of linear thermal expansion decreases with an increase in the fraction of the ferromagnetic crystalline phase.

Keywords

soft magnetic alloy crystallization nanocrystalline structure dilatometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Yoshizawa, S. Oguma, and K. Yamauchi, “New Febased soft magnetic alloys composed of ultrafine grain structure,” J. Appl. Phys. 64, 6044–6046 (1988).CrossRefGoogle Scholar
  2. 2.
    G. Herzer, “Grain structure and magnetism of nanocrystalline ferromagnets,” IEEE Trans. Magn. 25, 3327–3329 (1989).CrossRefGoogle Scholar
  3. 3.
    Y. Yoshizawa, “Nanocrystalline soft magnetic materials and their applications,” in Handbook of Advanced Magnetic Materials, Vol. 4: Properties and Applications, Ed. by Y. Liu, D. J. Sellmyer, and D. Shindo (Springer, New York, 2006), pp. 124–158.Google Scholar
  4. 4.
    G. Herzer, “Nanocrystalline soft magnetic alloys,” in Handbook of Magnetic Materials, Vol. 10, Ed. by K. H. J. Buschow (Elsevier, Amsterdam, 1997), pp. 415–462.CrossRefGoogle Scholar
  5. 5.
    V. I. Keilin, V. Ya. Belozerov, and Yu. N. Starodubtsev, “Magnetic alloy for annealing in oxide medium and method of its production,” RF Patent 2009258, 1994.Google Scholar
  6. 6.
    V. Ya. Belozerov, Yu. N. Starodubtsev, V. I. Keilin, “Strip core from magnetic alloy on the base of iron,” RF Patent 2033649, 1995.Google Scholar
  7. 7.
    Yu. N. Starodubtsev and V. Ya. Belozerov, Magnetic Properties of Amorphous and Nanocrystalline Alloys (Izd. Ural. Univ., Ekaterinburg, 2002) [in Russian].Google Scholar
  8. 8.
    V. Tsepelev, V. Konashkov, Yu. N. Starodubtsev, V. Ya. Belozerov, and D. Gaipishevarov, “Optimum regime of heat treatment of soft magnetic amorphous materials,” IEEE Trans. Magn. 48, 1327–1330 (2012).CrossRefGoogle Scholar
  9. 9.
    J. M. Silveyra, E. Illeková, P. Švec, D. Janickovic, A. Rosales-Rivera, and V. J. Cremaschi, “Phase transformations in Mo-doped FINEMETs,” Physica B 405, 2720–2725 (2010).CrossRefGoogle Scholar
  10. 10.
    J. M. Silveyra, V. J. Cremaschi, D. Janickovic, P. Švec, and B. Arcondo, “Structural and magnetic study of Mo-doped FINEMET,” J. Magn. Magn. Mater. 323, 290–296 (2011).CrossRefGoogle Scholar
  11. 11.
    B. N. Filippov, V. V. Shulika, A. V. Potapov, and N. F. Vil’danova, “Magnetic properties and temperature stability of a molybdenum-doped FINEMENTtype alloy,” Tech. Phys. 59, 373–377 (2014).CrossRefGoogle Scholar
  12. 12.
    Y. C. Niu, X. F. Bian, V. M. Wang, S. F. Jin, G. H. Li, F. M. Chu, and W. G. Zhang, “The peculiarity of contraction in the primary crystallization of amorphous Fe73.5Nb3CuSi13,5B9 alloy,” J. Alloys Compd. 433, 296–301 (2007).CrossRefGoogle Scholar
  13. 13.
    J. M. Silveyra, V. J. Cremaschi, G. Vlasák, E. Illeková, D. Janickovic, and P. Švec, “Magnetostrictive behavior of Fe73.5Si13.5B9Nb(3–x)MoxCu alloys,” J. Magn. Magn. Mater. 322, 2350–2354 (2010).CrossRefGoogle Scholar
  14. 14.
    O. Kubaschewski, Iron—Binary Phase Diagrams (Springer, Berlin, 1982).Google Scholar
  15. 15.
    C. L. Chien, D. Musser, E. M. Gyorgy, R. C. Sherwood, H. S. Chen, F. E. Luborsky, and J. L. Walter, “Magnetic properties of amorphous FexB(100–x) (72 = x = 86) and crystalline Fe3B,” Phys. Rev. B: Solid State 20, 283–295 (1979).CrossRefGoogle Scholar
  16. 16.
    J. B. Jeffries and N. Hershkowitz, “Temperature dependence of the hyperfine interactions of FeB,” Phys. Lett. 30, 187–188 (1969).CrossRefGoogle Scholar
  17. 17.
    V. A. Barinov, V. I. Voronin, V. A. Kazantsev, V. A. Tsurin, V. V. Fedorenko, S. I. Novikov, and V. T. Surikov, “Structure and magnetic properties of metastable Fe–B phase,” Phys. Met. Metallogr. 100, 456–467 (2005).Google Scholar
  18. 18.
    W. A. Chen and P. L. Ryder, “X-ray and differential scanning calorimetry study of the crystallization of amorphous Fe73.5CuNb3Si13,5B9 alloy,” Mater. Sci. Eng., B 34, 204–209 (1995).CrossRefGoogle Scholar
  19. 19.
    J. M. Borrego, C. F. Conde, and A. Conde, “Thermomagnetic study of devitrification in Fe–Si–B–Cu–Nb(–X) alloys,” Philos. Mag. Lett. 80, 359–365 (2000).CrossRefGoogle Scholar
  20. 20.
    R. Gerling, F. P. Schimansky, and R. Wagner, “Restoration of the ductility of thermally embrittled amorphous alloys under neutron-irradiation,” Acta Metall. 35, 1001–1006 (1987).CrossRefGoogle Scholar
  21. 21.
    Y. C. Niu, X. E. Bian, and W. M. Wang, “Origin of ductile–brittle transition of amorphous Fe78Si9B13 ribbon during low temperature annealing,” J. Non-Cryst. Solids 341, 40–45 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. S. Tsepelev
    • 1
  • Yu. N. Starodubtsev
    • 1
    • 2
  • V. A. Zelenin
    • 2
  • V. A. Kataev
    • 1
  • V. Ya. Belozerov
    • 2
  • V. V. Konashkov
    • 1
  1. 1.Yeltsin Ural Federal UniversityEkaterinburgRussia
  2. 2.Scientific and Production Enterprise GammametEkaterinburgRussia

Personalised recommendations