Skip to main content
Log in

Strength properties and structure of a submicrocrystalline Al–Mg–Mn alloy under shock compression

  • Strength and Plasticity
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The results of studying the strength of a submicrocrystalline aluminum A5083 alloy (chemical composition was 4.4Mg–0.6Mn–0.11Si–0.23Fe–0.03Cr–0.02Cu–0.06Ti wt % and Al base) under shockwave compression are presented. The submicrocrystalline structure of the alloy was produced in the process of dynamic channel-angular pressing at a strain rate of 104 s–1. The average size of crystallites in the alloy was 180–460 nm. Hugoniot elastic limit σHEL, dynamic yield stress σy, and the spall strength σSP of the submicrocrystalline alloy were determined based on the free-surface velocity profiles of samples during shock compression. It has been established that upon shock compression, the σHEL and σy of the submicrocrystalline alloy are higher than those of the coarse-grained alloy and σsp does not depend on the grain size. The maximum value of σHEL reached for the submicrocrystalline alloy is 0.66 GPa, which is greater than that in the coarse-crystalline alloy by 78%. The dynamic yield stress is σy = 0.31 GPa, which is higher than that of the coarse-crystalline alloy by 63%. The spall strength is σsp = 1.49 GPa. The evolution of the submicrocrystalline structure of the alloy during shock compression was studied. It has been established that a mixed nonequilibrium grain-subgrain structure with a fragment size of about 400 nm is retained after shock compression, and the dislocation density and the hardness of the alloy are increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. V. Garkushin, G. E. Ivanchikhina, S. V. Razorenov, O. N. Ignatova, I. I. Kaganova, A.N. Malyshev, A.M. Podurets, V. A. Rayevskii, V. I. Skokov, and O. A. Tyupanova, “Mechanical properties of grade M1 copper before and after shock compression in a wide range of loading duration,” Phys. Met. Metallogr. 111, 197–206 (2011).

    Article  Google Scholar 

  2. G. V. Garkushin, S. V. Razorenov, and G. I. Kanel, “Effect of structural factors on submicrosecond strength of D16T aluminum alloy,” Tech. Phys. 53, 1441–1446 (2008).

    Article  Google Scholar 

  3. M. V. Aniskin, O. N. Ignatova, I. I. Kaganova, A. V. Kalmanov, E. V. Koshatova, A. I. Lebedev, V. V. Losev, A. M. Podurets, L. V. Polyakov, M. I. Tkachenko, A. N. Tsibikov, G. A. Salischev, G. V. Garkushin, S. V. Razorenov, and M. A. Zocher, “Mechanical properties of tantalum with different types of microstructure under high-rate deformation,” Phys. Mesomech. 14, 79–84 (2011).

    Article  Google Scholar 

  4. S. V. Razorenov, G. V. Garkushin, G. I. Kanel’, and O. N. Ignatova, “Resistance to dynamic deformation and fracture of tantalum with different grain and defect structure,” Phys. Solid State 54, 790–797 (2012).

    Article  Google Scholar 

  5. S. V. Razorenov, G. I. Kanel, and V. E. Fortov, “Submicrosecond strength of aluminum and an aluminum–magnesium alloy AMg6M at normal and enhanced temperatures,” Phys. Met. Metallogr. 95, 86–91 (2003).

    Google Scholar 

  6. G. I. Kanel, S. V. Razorenov, A. S. Savinykh, E. B. Zaretskii, and Yu. R. Kolobov, “Study of Structural Levels that Determine the Resistance to High-Strain-Rate Deformation and Fracture of Metals and Alloys,” Preprint OVT, Russian Academy of Sciences, No. 1-478, Moscow, 2004.

  7. G. V. Garkushin, O. N. Ignatova, G. I. Kanel, L. W. Meyer, and S. V. Razorenov, “Submicrosecond strength of ultrafine-grained materials,” Mech.Solids 45, 624–632 (2010).

    Article  Google Scholar 

  8. R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, and Y. T. Zhu, “Fundamentals of superior properties in bulk nanoSPD materials,” Mater. Res. Lett. 4, 1–21 (2016).

    Article  Google Scholar 

  9. I. G. Brodova, A. N. Petrova, I. G. Shirinkina, E. V. Shorokhov, I. V. Minaev, I. N. Zhgilev, and A. V. Abramov, “Fragmentation of the structure in Al-based alloys upon high speed effect,” Rev. Adv. Mater. Sci. 25, 128–135 (2010).

    Google Scholar 

  10. I. G. Brodova, A. N. Petrova, and I. G. Shirinkina, “Comparing specific features of the structural formation of aluminum alloys during severe and intense plastic deformation,” Tech. Phys. 76, 1233–1237 (2012).

    Google Scholar 

  11. I. G. Shirinkina, A. N. Petrova, I. G. Brodova, V. P. Pilyugin, and O. A. Antonova, “Phase and structural transformations in the aluminum AMTs alloy upon severe plastic deformation using various techniques,” Phys. Met. Metallogr. 113, 170–175 (2012).

    Article  Google Scholar 

  12. I. G. Brodova, I. G. Shirinkina, A. N. Petrova, O. V. Antonova, and V. P. Pilyugin, “Evolution of the structure of V95 aluminum alloy upon high-pressure torsion,” Phys. Met. Metallogr. 111, 630–638 (2011).

    Article  Google Scholar 

  13. I. G. Brodova, I. G. Shirinkina, A. N. Petrova, V. P. Pilyugin, and T. P. Tolmachev, “Structure of an AMTs aluminum alloy after high-pressure torsion in liquid nitrogen,” Phys. Met. Metallogr. 114, 667–671 (2013).

    Article  Google Scholar 

  14. I. G. Brodova, A. N. Petrova, S. V. Razorenov, and E.V. Shorokhov, “Resistance of submicrocrystalline aluminum alloys to high-rate deformation and fracture after dynamic channel angular pressing,” Phys. Met. Metallogr. 116, 519–526 (2015).

    Article  Google Scholar 

  15. Z. Zhao, L. Wang, D. Fan, B. X. Bie, X. M. Zhou, T. Sou, Y. L. Li, M. W. Chen, C. L. Liu, M. L. Qi, M. H. Zhu, and S. N. Luo, “Macrodeformation twins in singlecrystal aluminum,” Phys. Rev. Lett. 116, 075501 (2016).

    Article  Google Scholar 

  16. E. V. Shorokhov, I. N. Zhgilev, and R. Z. Valiev, “Method of Material Dynamic Treatment,” RF Patent 2283717, Byull. Izobr., 2006, no.26.

  17. A. N. Petrova, I. G. Brodova, and E. V. Shorokhov, “Structural refinement in Al–Mg–Mn alloy by the dynamic channel angular pressing method,” Perspekt. Mater. no. 12, 72–78 (2015).

    Google Scholar 

  18. I. G. Brodova, A. N. Petrova, S. V. Razorenov, O. P. Plekhov, and E. V. Shorokhov, “Deformation behavior of submicrocrystalline aluminum alloys during dynamic loading,” Russ. Metall. (Metally) 2016, 342–348 (2016).

    Article  Google Scholar 

  19. T. Antoun, L. Seaman, D. R. Curran, G. I. Kanel, S.V. Razorenov, and A. V. Utkin, Spall Fracture (Springer, Berlin, 2000).

    Google Scholar 

  20. L. M. Barker and R. E. Hollenbach, “Laser interferometry for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43, 4669–4675 (1972).

    Article  Google Scholar 

  21. S. P. Marsh, LASL Shock Hugoniot Data (Univ. California Press, Berkeley, 1980).

    Google Scholar 

  22. G. I. Kanel’, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock-wave Effects in Condensed Media (Yanus-K, Moscow, 1996) [in Russian].

    Google Scholar 

  23. R. L. Whelchel, N. N. Thadhani, R. H. Sanders, L. J. Kecskes, and C. L. Williams, “Spall properties of Al5083 plate fabricated using equi-channel angular pressing (ECAP) and rolling,” J. Phys.: Conf. Ser. 500, 112006 (2014). doi 10.1088/1742-6596/500/11/112066

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Petrova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrova, A.N., Brodova, I.G. & Razorenov, S.V. Strength properties and structure of a submicrocrystalline Al–Mg–Mn alloy under shock compression. Phys. Metals Metallogr. 118, 601–607 (2017). https://doi.org/10.1134/S0031918X17060072

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X17060072

Keywords

Navigation