Abstract
The methods of transmission and reflection electron diffraction have been used to investigate the structure of Fe3O4 films depending on the temperature of their synthesis on an Si substrate coated with an ultrathin layer of SiO2. The thus-grown polycrystalline films of magnetite had a texture, the axis of which was perpendicular to the surface of the SiO2 film. It has been revealed that, with an increase in the growth temperature, a structural rearrangement occurs which is characterized by an increase in the volume fraction of grains with the preferred (311) orientation. A study of the magnetotransport properties of the films has shown that the magnitude of their magnetoresistance increases with an increase in the temperature of their synthesis. It has been established that in the Fe3O4/SiO2/Si system with a tunneling-thin layer of SiO2 the magnetoresistance decreases as a result of the flow of an electric current through the silicon substrate.
This is a preview of subscription content, access via your institution.
References
Z. Zhang and S. Satpathy, “Electron states, magnetism, and the Verwey transition in magnetite”, Phys. Rev. B: Condens. Matter 44, 13319–13331 (1991).
I. Zutic, J. Fabian, and S. das Sarma, “Spintronics: Fundamentals and applications”, Rev. Modern Phys. 76, 323–332 (2004).
T. Suzuki, T. Sasaki, T. Oikawa, M. Shirashi, Y. Suzuki, and K. Noguchi, “Room-temperature electron spin transport in a highly doped Si channel”, Appl. Phys. Express 4, 023003 (2011).
T. Fujii, M. Takano, R. Katano, Y. Bando, and Y. Isozumi, “Preparation and characterization of (111)-oriented Fe3O4 films deposited on sapphire”, J. Appl. Phys. 66, 3168–3172 (1989).
A. V. Ramos, J.-B. Moussy, M.-J. Guittet, A. M. Bataille, M. Gautier-Soyer, M. Viret, C. Gatel, P. Bayle-Guillemaud, and E. Snoeck, “Magnetotransport properties of Fe3O4 epitaxial thin films: Thickness effects driven by antiphase boundaries”, J. Appl. Phys. 100, 103902 (2006).
Y. X. Lu, J. S. Claydon, Y. B. Xu, S. M. Thompson, K. Wilson, and G. van der Laan, “Epitaxial growth and magnetic properties of half-metallic Fe3O4 on GaAs(100)”, Phys. Rev. B: Condens. Matter Mater. Phys. 70, 233304 (2004).
T. Kado, “Structural and magnetic properties of magnetite-containing epitaxial iron oxide films grown on MgO(001) substrates”, J. Appl. Phys. 103, 043902 (2008).
S. Tiwari, R. Prakash, R. J. Choudhary, and D. M. Phase, “Oriented growth of Fe3O4 thin film on crystalline and amorphous substrates by pulsed laser deposition”, J. Phys. D: Appl. Phys. 40, 4943–4947 (2007).
R. J. Kennedy and P. A. Stamp, “Fe3O4 films grown by laser ablation on Si(100) and GaAs(100) substrates with and without MgO buffer layers”, J. Phys. D: Appl. Phys. 32, 16–21 (1999).
M. L. Parames, J. Mariano, Z. Viskadourakis, N. Popovici, M. S. Rogalski, J. Giapintzakis, and O. Conde, “PLD of Fe3O4 films: Influence of background gas on surface morphology and magnetic properties”, Appl. Surf. Sci. 252, 4610–4614 (2006).
Y. K. Kim and M. Oliveria, “Magnetic properties of reactively sputtered Fe1–xO and Fe3O4 thin films”, J. Appl. Phys. 75, 431–437 (1994).
W. B. Mi, H. Liu, Z. Q. Li, P. Wu, E. Y. Jiang, and H. L. Bai, “Evolution of structure, magnetic and transport properties of sputtered films from Fe to Fe3O4”, J. Phys. D: Appl. Phys. 39, 5109–5115 (2006).
C. Park, Y. Peng, J.-G. Zhu, D. E. Laughlin, and R. M. White, “Magnetoresistance of polycrystalline Fe3O4 films prepared by reactive sputtering at room temperature”, J. Appl. Phys. 97, 10C303 (2005).
J. Tang, K.-Y. Wang, and W. Zhou, “Magnetic properties of nanocrystalline Fe3O4 films”, J. Appl. Phys. 89, 7690–7692 (2001).
S. Tiwari, R. J. Choudhary, R. Prakash, and D. M. Phase, “Growth and properties of pulsed laser deposited thin films of Fe3O4 on Si substrates of different orientation”, J. Phys.: Condens. Matter 19, 176002 (2007).
C. Boothman, A. M. Sanchez, and S. van Dijken, “Structural, magnetic, and transport properties of Fe3O4/Si(111) and Fe3O4/Si(001)”, J. Appl. Phys. 101, 123903 (2007).
G. Zhang, C. Fan, L. Pan, F. Wang, P. Wu, H. Qiu, Y. Gu, and Y. Zhang, “Magnetic and transport properties of magnetite thin films”, J. Magn. Magn. Mater. 293, 737–745 (2005).
S. Jain, A. O. Adeyeye, and C. B. Boothroyd, “Electronic properties of half-metallic Fe3O4 films”, J. Appl. Phys. 97, 093713 (2005).
X. Huang and J. Ding, “The structure, magnetic and transport properties of Fe3O4 thin films on different substrates by pulsed laser deposition”, J. Korean Phys. Soc. 62, 2228–2232 (2013).
V. V. Balashev, V. A. Vikulov, T. A. Pisarenko, and V. V. Korobtsov, “Effect of oxygen pressure on the texture of a magnetite film grown by reactive deposition on a SiO2/Si(100) surface”, Phys. Solid State 57, 2532–2536 (2015).
V. A. Vikulov, V. V. Balashev, T. A. Pisarenko, A. A. Dimitriev, and V. V. Korobtsov, “The effect of synthesis temperature on structural and magnetic properties of Fe3O4 Films Grown on the SiO2/Si(001) surface”, Tech. Phys. Lett. 38, 336–339 (2012).
A. Ishizaka and Y. Shiraki, “Low temperature surface cleaning of silicon and its application to silicon MBE”, J. Electrochem. Soc. 133, 666–671 (1986).
H. A. Kobayashi, O. Maida, M. Takahashi, and H. Iwasa, “Nitric acid oxidation of Si to form ultrathin silicon dioxide layers with a low leakage current density”, J. Appl. Phys. 94, 7328–7335 (2003).
I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth”, J. Vac. Sci. Technol. A 21, S117–S128 (2003).
R. D. Heidenreich, Fundamentals of Transmission Electron Microscopy (Interscience Publishers, New York, 1964).
V. V. Balashev, V. V. Korobtsov, T. A. Pisarenko, and L. A. Chebotkevich, “Growth of Fe3O4 films on the Si(111) surface covered by a thin SiO2 layer”, Tech. Phys. Lett. 56, 1501–1507 (2011).
J. T. Drotar, T.-M. Lu, and G.-C. Wang, “Real-time observation of initial stages of copper film growth on silicon oxide using reflection high-energy electron diffraction”, J. Appl. Phys. 96, 7071–7079 (2004).
M. Zies, R. Höhne, H. C. Semmelhack, H. Reckentin, M. H. Hong, and P. Esquinazi, “Mechanism of grainboundary magnetoresistance in Fe3O4 films”, Eur. Phys. J. B 28, 415–422 (2002).
H. Liu, E. Y. Jiang, and H. L. Bai, “Structures and transport properties of polycrystalline Fe3O4 films”, J. Phys.: Condens. Matter 15, 8003–8009 (2003).
H. Liu, E. Y. Jiang, H. L. Bai, R. K. Zheng, and X. X. Zhang, “Thickness dependence of magnetic and magneto-transport properties of polycrystalline Fe3O4 films prepared by reactive sputtering at room temperature”, J. Phys. D: Appl. Phys. 36, 2950–2953 (2003).
V. A. Vikulov, A. A. Dimitriev, V. V. Balashev, T. A. Pisarenko, and V. V. Korobtsov, “Low-temperature conducting channel switching in hybrid Fe3O4/SiO2/n-Si structures”, Mat. Sci. Eng., B 211, 33–36 (2016).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © V.V. Balashev, V.A. Vikulov, A.A. Dimitriev, T.A. Pisarenko, E.V. Pustovalov, V.V. Korobtsov, 2017, published in Fizika Metallov i Metallovedenie, 2017, Vol. 118, No. 7, pp. 679–685.
Rights and permissions
About this article
Cite this article
Balashev, V.V., Vikulov, V.A., Dimitriev, A.A. et al. Evolution of the structural and magnetotransport properties of magnetite films depending on the temperature of their synthesis on the SiO2/Si(001) surface. Phys. Metals Metallogr. 118, 644–651 (2017). https://doi.org/10.1134/S0031918X17050027
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0031918X17050027
Keywords
- magnetite
- texture
- reflection high-energy electron diffraction (RHEED)
- magnetoresistance