Skip to main content
Log in

Energy of internal interfaces as a characteristic of the structural evolution of ultrafine-grained copper and nickel after annealing

  • Structure, Phase Transformations, and Diffusion
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Scanning tunnel microscopy is used to directly estimate the relative energy of internal interfaces in ultrafine-grained copper after equal-channel angular pressing, followed by rolling. Estimates of the boundary energy for as-prepared samples and samples annealed at different temperatures indicate that ultrafinegrained copper has nonequilibrium boundaries with energy higher than that in coarse-grained copper. The cumulative distribution functions of the relative boundary energy in the grain–subgrain structure allow the qualitative estimation of the redistribution of excess energy between the boundaries of various types during structure evolution upon annealing. Differences between the behaviors of the cumulative distribution functions of relative boundary energy in ultrafine-grained copper and nickel produced by the same technology are revealed. These differences are related to the characteristics of the structure formation of two metals during severe plastic deformation and its subsequent evolution during annealing, which depend on the stacking fault energy and the melting point of copper and nickel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Sauvage, G. Wilde, S. V. Divinski, Z. Horita, and R. Z. Valiev, “Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena,” Mater. Sci. Eng., A 540, 1–12 (2012).

    Article  Google Scholar 

  2. A. V. Korznikov, G. F. Korznikova, M. M. Myshlyaev, R. Z. Valiev, D. Salimonenko, and O. Dimitrov, “Evolution of nanocrystalline Ni structure during heating,” Phys. Met. Metallogr. 84, 413–417 (1997).

    Google Scholar 

  3. Yu. G. Krasnoperova, L. M. Voronova, M. V. Degtyarev, T. I. Chashchukhina, and N. N. Resnina, “Recrystallization of nickel upon heating below the temperature of thermoactivated nucleation,” Phys. Met. Metallogr. 116, 79–86 (2015).

    Article  Google Scholar 

  4. V. M. Bykov, V. A. Likhachev, Yu. A. Nikonov, L. L. Serbina, and L. I. Shibalova, “Fragmentation and dynamic recrystallization of copper at large and very large plastic deformations,” Phys. Met. Metallogr. 45, 163–169 (1978).

    Google Scholar 

  5. S. S. Gorelik, S. V. Dobatkin, and L. M. Kaputkina, Recrystallization of Metals and Alloys (MISIS, Moscow, 2005).

    Google Scholar 

  6. A. V. Nokhrin and I. M. Makarov, “Study of grain structure of nano- and microcrystalline metals by atomic-force microscopy method,” Industrial laboratory 68, 71–79 (2002).

    Google Scholar 

  7. I. V. Ratochka, O. N. Lykova, A. Yu. Geras’kina, and V. A. Skripnyak, “Grain-boundary sliding in a submicrocrystalline Ti–6Al–4V titanium alloy under superplastic deformation,” Phys. Mesomech. 12, 97–101 (2009).

    Google Scholar 

  8. E. Rabkin, Y. Amouyal, and L. Klinger, “Scanning probe microscopy study of grain boundary migration in NiAl,” Acta Mater. 52, 4953–4959 (2004).

    Article  Google Scholar 

  9. S. Bojarski, M. Harmer, and G. Rohrer, “Influence of grain boundary energy on the nucleation of complexion transitions,” Scr. Mater. 88, 1–4 (2014).

    Article  Google Scholar 

  10. D. Saylor and G. Rohrer, “Influence of grain-boundary misorientation on thermal groove geometry in ceramic polycrystals,” J. Am. Ceram. Soc. 82, 1529–36 (1999).

    Article  Google Scholar 

  11. P. Cantwell, M. Tang, S. Dillon, J. Luo, G. Rohrer, and M. Harmer, “Grain boundary complexions,” Acta Mater. 62, 1–48 (2014).

    Article  Google Scholar 

  12. Y. Amouyal and E. Rabkin, “A scanning force microscopy study of grain boundary energy in copper subjected to equal channel angular pressing,” Acta Mater. 55, 6681–6689 (2007).

    Article  Google Scholar 

  13. R. J. Behm, N. Garcia, and H. Rohrer, Scanning Tunneling Microscopy and Related Methods (Kluver Acad., Dordrecht, 1989).

    Google Scholar 

  14. V. I. Vettegren’, S. Sh. Rakhimov, and V. N. Svetlov, “Evolution of the surface relief of annealed copper and palladium samples under load,” Phys. Solid State 39, 1389–1392 (1997).

    Article  Google Scholar 

  15. P. V. Kuznetsov, I. V. Petrakova, and N. P. Beketov, “Effect of partial recovery of zinc surface at room temperature after basal plane indentation,” J. Surf. Invest.: X-ray, Synchr., Neutr. Tech. 2, 751–758 (2008).

    Article  Google Scholar 

  16. P. V. Kuznetsov, I. V. Petrakova, T. V. Rakhmatulina, A. A. Baturin, and A. V. Korznikov, ”The use of scanning tunneling microscopy in characterizing the grainsubgrain structure of SMC nickel after low temperature annealing,” Zavod. Lab., Diagn. Mater. 78 (4), 26–34 (2012).

  17. Saltykov, S.A., Stereometric Metallography (Metallurgiya, Moscow, 1976).

    Google Scholar 

  18. Z. Q. Yang, “Effect of dynamical heating on microstructure and microhardness of Ni processed by highpressure torsion,” Mater. Lett. 60, 3846–3850 (2006).

    Article  Google Scholar 

  19. N. D. Stepanov, A. V. Kuznetsov, G. A. Salishchev, G. I. Raab, and R. Z. Valiev, “Effect of cold rolling on microstructure and mechanical properties of copper subjected to ECAP with various numbers of passes,” Mater. Sci. Eng., A 554, 105–115 (2012).

    Article  Google Scholar 

  20. Yu. P. Kolobov, N. V. Girsova, K. V. Ivanov, G. P. Grabovetskaya, O. B. Perevalova, “The structural features and mechanical properties of submicrocrystalline nickel produced by severe plastic deformation,” Russ. Phys. J. 45, 547–552 (2002).

    Article  Google Scholar 

  21. E. V. Kozlov, N. A. Koneva, A. N. Zhdanov, N. A. Popova, and Yu. F. Ivanov, “Structure and resistance to deformation of fcc ultrafine-grained metals and alloys,” Phys. Mesomech. 7 (4), 93–113 (2004).

    Google Scholar 

  22. R. K. Islamgaliev, K. M. Nesterov, and R. Z. Valiev, “Structure evolution in copper during powders consolidation by high pressure torsion,” Vestnik UGATU 17 (4), 81–89 (2013).

    Google Scholar 

  23. L. Balogh, T. Unga, Y. Zhao, Y. T. Zhu, Z. Horita, C. Xu, and T. Langdon, “Influence of stacking-fault energy on microstructural characteristics of ultrafinegrain copper and copper–zinc alloys,” Acta Mater. 56, 809–820 (2008).

    Article  Google Scholar 

  24. E. V. Kozlov, A. N. Zhdanov, and N. A. Koneva, “Mechanisms of deformation and mechanical properties of metals,” Phys. Mesomech. 10 (3), 95–103 (2007).

    Google Scholar 

  25. Ch.-M. Kuo and Ch.-Sh. Lin, “Static recovery activation energy of pure copper at room temperature,” Scr. Mater. 57, 667–670 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Kuznetsov.

Additional information

Original Russian Text © P.V. Kuznetsov, T.V. Rakhmatulina, I.V. Belyaeva, A.V. Korznikov, 2017, published in Fizika Metallov i Metallovedenie, 2017, Vol. 118, No. 3, pp. 255–262.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, P.V., Rakhmatulina, T.V., Belyaeva, I.V. et al. Energy of internal interfaces as a characteristic of the structural evolution of ultrafine-grained copper and nickel after annealing. Phys. Metals Metallogr. 118, 241–248 (2017). https://doi.org/10.1134/S0031918X17030115

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X17030115

Keywords

Navigation