Skip to main content
Log in

Experimental investigation of in-situ transformations of the M 7C3 carbide in the cast Fe–Cr–Ni alloy

  • Structure, Phase Transformations, and Diffusion
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The microstructure and the phase composition of a heat-resistant Fe–Cr–Ni alloy (0. 45C–25Cr–35Ni) has been investigated in the cast state and after annealing at 1150°C for 2–100 h. After a 2-h high-temperature annealing, the fragmentation of the crystal structure of the eutectic M 7C3 carbides into domains of ~500 nm in size with a partial transition into M 23C6 carbides is observed. After a 100-h holding, the complete transition of the hexagonal M 7C3 carbides into M 23C6 with a face-centered cubic structure occurs. The carbide transition M 7C3M 23 can be considered to be an in situ transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Garbiak, W. Jasinski, and B. Piekarski, “Materials for reformer furnace tubes. History of evolution,” Arch. Foundry Eng. 11, 47–52 (2011).

    Google Scholar 

  2. M. N. Ilman, “Analysis of material degradation and life assessment of 25Cr–38Ni–Mo–Ti wrought alloy steel (HPM) for cracking tubes in an ethylene plant,” Eng. Fail. Anal. 42, 100–108 (2014).

    Article  Google Scholar 

  3. D. J. Tillack and J. E. Guthrie, “Wrought and cast heatresistant stainless steels and nickel alloys for the refining and petrochemical industries,” in Nickel Development Institute, Toronto: Technical Series, No. 10, 71–85 (1998).

    Google Scholar 

  4. B. Piekarski, “Improving the resistance to carburising of creep-resistant castings,” Arch. Foundry Eng. 8, 181–184 (2008).

    Google Scholar 

  5. A. A. Kaya, P. Krauklis, and D. J. Young, “Microstructure of HK40 alloy after high-temperature service in oxidizing/ carburizing environment: I. Oxidation phenomena and propagation of a crack,” Mater. Char. 49 (1), 11–21 (2002).

    Article  Google Scholar 

  6. A. A. Kaya, “Microstructure of HK40 alloy after hightemperature service in oxidizing/carburizing environment: II. Carburization and carbide transformations,” Mater. Char. 49 (1), 23–34 (2002).

    Article  Google Scholar 

  7. Y. Jingbo, G. Yimin, Y. Fang, Y. Caiying, Y. Zhaozhong, Y. Dawei, and M. Shengqiang, “Effect of tungsten on the microstructure evolution and mechanical properties of yttrium modified HP40Nb alloy,” Mater. Sci. Eng., A 529, 361–369 (2011).

    Article  Google Scholar 

  8. G. F. van der Voort, G. M. Lucas, and E. P. Manilova, “Metallography and microstructures of heat-resistant alloys,” in ASM Handbook, vol. 9: Metallography and Microstructures, Ed. by G. F. van der Voort (ASM International, Metals Park, Ohio, 2004), pp. 820–859.

    Google Scholar 

  9. E. A. Kenik, P. J. Maziasz, R. W. Swindeman, J. Cervenka, and D. May, “Structure and phase stability in cast modified-HP austenite after long-term ageing,” Scr. Mater. 49, 117–122 (2003).

    Article  Google Scholar 

  10. F. C. Nunes, L. H. de Almeida, J. Dille, J.-L. Deldlancke, and I. le May, “Microstructural changes caused by yttrium addition to NbTi-modified centrifugally cast HP-type stainless steels,” Mater. Char. 58, 132–142 (2007).

    Article  Google Scholar 

  11. V. A. Barinov, A. V. Protasov, and V. T. Surikov, “Studying mechanosynthesized Hägg carbide (Fe5C2),” Phys. Met. Metallogr. 116, 791–801 (2015).

    Article  Google Scholar 

  12. A. I. Rudskoy, A. S. Oryshchenko, S. Yu. Kondrat’ev, G. P. Anastasiadi, M. D. Fuks, and S. N. Petrov, “Special features of structure and long-term strength of cast refractory alloy 45Kh26N33S2B2,” Met. Sci. Heat Treat. 55, 209–215 (2013).

    Article  Google Scholar 

  13. A. I. Rudskoi, G. P. Anastasiadi, S. Yu. Kondrat’ev, A. S. Oryshchenko, and M. D. Fuks, “Effect of electron factor (number of electron holes) on kinetics of nucleation, growth, and dissolution of phases during long-term high–temperature holdings of 0.45C–26Cr–33Ni–2Si–2Nb superalloy,” Phys. Met. Metallogr. 115, 1–11 (2014).

    Article  Google Scholar 

  14. A. I. Rudskoy, A. S. Oryshchenko, S. Yu. Kondrat’ev, G. P. Anastasiadi, and M. D. Fuks, “Mechanisms and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 in long-term high-temperature holds. Part 1,” Met. Sci. Heat Treat. 56, 3–8 (2014).

    Article  Google Scholar 

  15. A. I. Rudskoy, S. Yu. Kondrat’ev, G. P. Anastasiadi, A. S. Oryshchenko, M. D. Fuks, “Mechanisms and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 in long-term high-temperature holds. Part 1,” Met. Sci. Heat Treat. 56, 124–130 (2014).

    Article  Google Scholar 

  16. L. G. Korshunov, V. V. Sagaradze, N. L. Chernenko, and V. A. Shabashov, “Friction-induced structural transformations of the carbide phase in Hadfield steel,” Phys. Met. Metallogr. 116, 823–828 (2015).

    Article  Google Scholar 

  17. K. G. Buchanan and M. V. Kral, “Crystallography and morphology of niobium carbide in as-cast HP-niobium reformer tubes,” Metall. Mater. Trans. A 43, 1760–1769 (2012).

    Article  Google Scholar 

  18. T. Sourmail, “Precipitates in creep resistant austenitic stainless steels,” Mater. Sci. Technol. 17, 1–14 (2001).

    Article  Google Scholar 

  19. I. I. Gorbachev, A. Yu. Pasynkov, and V. V. Popov, “Prediction of the austenite-grain size of microalloyed steels based on the simulation of the evolution of carbonitride precipitates,” Phys. Met. Metallogr. 116, 1127–1134 (2015).

    Article  Google Scholar 

  20. I. A. Sustaita-Torres, S. Haro-Rodrigues, M. P. Guerrero-Mata, M. de la Garza, E. Valdes, F. Deschaux- Beaume, and R. Colas, “Aging of cast 35Cr–45Ni heat resistant alloy,” Mater. Chem. Phys. 133, 1018–1023 (2012).

    Article  Google Scholar 

  21. S. Yu. Kondrat’ev, A. V. Ptashnik, G. P. Anastasiadi, and S. N. Petrov, “Analysis of transformations of carbide phases in alloy 25Cr35Ni by the method of quantitative electron microscopy,” Met. Sci. Heat Treat. 57, 402–409 (2015).

    Article  Google Scholar 

  22. A. I. Rudskoi, S. Yu. Kondrat’ev, G. P. Anastasiadi, A. S. Oryshchenko, M. D. Fuks, and S. N. Petrov, “Transformation of the structure of refractory alloy 0.45C–26Cr–33Ni–2S–2Nb during a long-term high-temperature hold,” Met. Sci. Heat Treat. 55, 517–525 (2014).

    Article  Google Scholar 

  23. K. Yamamoto, M. Hashimoto, N. Sasaguri, and Y. Matsubara, “Solidification of high chromium cast iron substituted by 25 to 70 mas. % Ni for Fe,” Mater. Trans. 50, 2253–2258 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Kondrat’ev.

Additional information

Original Russian Text © V.S. Kraposhin, S.Yu. Kondrat’ev, A.L. Talis, G.P. Anastasiadi, 2017, published in Fizika Metallov i Metallovedenie, 2017, Vol. 118, No. 3, pp. 240–246.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraposhin, V.S., Kondrat’ev, S.Y., Talis, A.L. et al. Experimental investigation of in-situ transformations of the M 7C3 carbide in the cast Fe–Cr–Ni alloy. Phys. Metals Metallogr. 118, 227–232 (2017). https://doi.org/10.1134/S0031918X17030085

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X17030085

Keywords

Navigation