Skip to main content
Log in

Influence of electrodeposition parameters on structural and morphological features of Ni nanotubes

  • Structure, Phase Transformations, and Diffusion
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Nickel nanotubes have been formed in pores of ion-track membranes using electrochemical deposition. Morphologic and structural features of these nanostructures have been comprehensively studied. The evolution of the nanotubes wall thickness and parameters of their crystalline structure by variations of the synthesis voltage and temperature has been determined. On the base of these data the nanotubes growth mechanism has been estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Goldberger, R. He, and Y. Zhang, “Single-crystal gallium nitride nanotubes,” Nature 422, 599–602 (2003).

    Article  Google Scholar 

  2. M. A. Sanchez-Castillo, C. Couto, and W. B. Kim, “gold-nanotube membranes for the oxidation of CO at gas-water interfaces,” Angew. Chem. Int. Ed. 43, 1140–1142 (2004).

    Article  Google Scholar 

  3. A. Kros, R. J. M. Nolte, and N. A. J. M. Sommerdijk, “Conducting polymers with confined dimensions: Track-etch membranes for amperometric biosensor applications,” Adv. Mater. 14, 1779–1782 (2002).

    Article  Google Scholar 

  4. S. Yu, S. B. Lee, and C. R. Martin, “Electrophoretic protein transport in gold nanotube membranes,” Anal. Chem. 75, 1239–1244 (2003).

    Article  Google Scholar 

  5. S. R. Dave and X. W. Gao, “Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: A versatile and evolving technology,” Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 583–609 (2009).

    Article  Google Scholar 

  6. S. J. Tans, M. H. Devoret, and H. Dai, “Individual single-wall carbon nanotubes as quantum wires,” Nature 386, 474–477 (1997).

    Article  Google Scholar 

  7. H. Dai, J. H. Hafner, and A. G. Rinzler, “Nanotubes as nanoprobes in scanning probe microscopy,” Nature 384, 147–150 (1996).

    Article  Google Scholar 

  8. C. M. Lieber, “One-dimensional nanostructures: Chemistry, physics and applications,” Solid State Commun. 107, 607–616 (1998).

    Article  Google Scholar 

  9. S. E. Demyanov, E. Yu. Kaniukov, A. V. Petrov, and V. Sivakov, “Positive magnetoresistance in Si/SiO2 (Cu/Ni) structures,” Sens. Actuat., A. Phys. 216, 64–68 (2014).

    Article  Google Scholar 

  10. T. Sehayek, M. Lahav, and R. Popovitz-Biro, “Template synthesis of nanotubes by room-temperature coalescence of metal nanoparticles,” Chem. Mater. 17, 3743–3748 (2005).

    Article  Google Scholar 

  11. Y. Li, J. Wang, Z. Deng, Y. Wu, X. Sun, D. Yu, and P. Yang, “Bismuth nanotubes: A rational low-temperature synthetic route,” J. Am. Chem. Soc. 123, 9904–9905 (2001).

    Article  Google Scholar 

  12. V. Haehnel, S. Fähler, and P. Schaaf, “Towards smooth and pure iron nanowires grown by electrodeposition in self-organized alumina membranes,” Acta Mater. 58, 2330–2337 (2010).

    Article  Google Scholar 

  13. E. Kaniukov, A. Kozlovsky, D. Shlimas, D. Yakimchuk, M. Zdorovets, and K. Kadyrzhanov, “Tunable synthesis of copper nanotubes,”IOP Conf. Ser.: Mater. Sci. Eng. 110, 012013, (2016).

  14. A. Kozlovskiy, A. Zhanbotin, M. Zdorovets, I. Manakova, A. Ozernoy, K. Kadyrzhanov, and V. Rusakov, “Study of Ni/Fe Nanotube Properties,” Nucl. Instrum. Meth. Phys. Res. Sec. B: Beam Interactions with Materials and Atoms 365 Part B, 663–667 (2015).

    Article  Google Scholar 

  15. J. R. Morber, Y. Ding, and M. S. J. Haluska, “PLDassisted VLS growth of aligned ferrite nanorods, nanowires, and nanobelts synthesis, and properties,” Phys. Chem. B 110, 21672–21679 (2006).

    Article  Google Scholar 

  16. Z. Liu, Q. Zhang, and G. J. Shi, “Solvothermal synthesis and magneto-optical properties of Zn1–x NixO hierarchical microspheres,” J. Magn. Magn. Mater. 323, 1022–1026 (2011).

    Article  Google Scholar 

  17. C. R. Martin, “Nanomaterials-a membrane-based approach synthetic,” Science 266, 1961–1966 (1994).

    Article  Google Scholar 

  18. C. R. Martin, J. D. Klein, and R. D. Herric, “Electrochemical fabrication of cadmium chalcogenide microdiode arrays,” Chem. Mater. 5, 902–904 (1993).

    Article  Google Scholar 

  19. Z. Hua, S. Yang, and H. Huang, “Metal nanotubes prepared by a sol–gel method followed by a hydrogen reduction procedure,” Nanotecnology 17, 5106–5110 (2006).

    Article  Google Scholar 

  20. M. Zdorovets, I. Ivanov, and V. Alexandrenko, “Accelerator complex based on DC-60 cyclotron, in Proc. RuPAC, pp. 287–289 (2014).

  21. S. E. Demyanov, E. Yu. Kaniukov, and A. V. Petrov, “On the morphology of Si/SiO2/Ni nanostructures with swift heavy ion tracks in silicon oxide,” J. Surf. Inv. X-ray, Synchr. Neutron Tech. 8, 805–813 (2014).

    Article  Google Scholar 

  22. S. Barth, S. Estrade, and F. Hernandez-Ramirez, “Morphological evolution and chemical composition of vapor grown one-dimensional magnetite nanostructures,” Cryst. Growth Des. 9, 1077–1081 (2009).

    Article  Google Scholar 

  23. M. G. Faraj and K. Ibrahim, “Optical and structural properties of thermally evaporated zinc oxide thin films on polyethylene terephthalate substrates,” Int. J. Polym. Sci. 2011, 302843 (2011).

    Article  Google Scholar 

  24. R. Jenkins and R. L. Snyder, Introduction to X-ray Powder Diffractometry (Wiley, 1996), pp. 89–91.

    Book  Google Scholar 

  25. B. Yoo, F. Xiao, and K. N. Bozhilov, “Electrodeposition of thermoelectric superlattice nanowires,” Adv. Mater. 19, 296–299 (2007).

    Article  Google Scholar 

  26. M. Motoyama, Y. Fukunaka, and T. Sakka, “Initial stages of electrodeposition of metal nanowires in nanoporous templates,” Electrochim. Acta 53, 205–212 (2007).

    Article  Google Scholar 

  27. B. Bercu, I. Enculescu, and R. Spohr, “Copper tubes prepared by electroless deposition in ion track templates,” Nucl. Instrum. Meth. Phys. Res. Sec. B: Beam Interactions with Materials and Atoms 225, 497–502 (2004).

    Article  Google Scholar 

  28. H. Cao, L. Wang, Y. Qiu, Q. Wu, G. Wang, L. Zhang, and X. Liu, “Generation and growth mechanism of metal (Fe, Co, Ni) nanotube arrays,” Chem. Phys. Chem. 7, 1500–1504 (2006).

    Google Scholar 

  29. L. M. Graham, S. Cho, S. K. Kim, M. Noked, and S. B. Lee, “Role of boric acid in nickel nanotube electrodeposition: A surface-directed growth mechanism,” Chem. Commun. 50, 527–529 (2014).

    Article  Google Scholar 

  30. T. Chowdhury, D. P. Casey, and J. F. Rohan, “Additive influence on Cu nanotube electrodeposition in anodized aluminum oxide templates,” Electrochem. Commun. 11, 1203–1206 (2009).

    Article  Google Scholar 

  31. T. A. Tochitskii and V. M. Fedosyuk, Electrolytic Deposition of Films and Nanostructures (Izd. tsentr BGU, Minsk, 2011) [in Russian].

    Google Scholar 

  32. M. Ya. Popeka, Internal Stresses of Electrolytically Deposited Metals (Zap.-Sib. knizhnoe Izd-vo, Novosibirsk, 1966) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Shumskaya.

Additional information

Original Russian Text © A.L. Kozlovskiy, D.I. Shlimas, A.E. Shumskaya, E.Yu. Kaniukov, M.V. Zdorovets, K.K. Kadyrzhanov, 2017, published in Fizika Metallov i Metallovedenie, 2017, Vol. 118, No. 2, pp. 174–179.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlovskiy, A.L., Shlimas, D.I., Shumskaya, A.E. et al. Influence of electrodeposition parameters on structural and morphological features of Ni nanotubes. Phys. Metals Metallogr. 118, 164–169 (2017). https://doi.org/10.1134/S0031918X17020065

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X17020065

Keywords

Navigation